Corals from deep-water methane-seep deposits in Paleogene strata

is one of the most diverse so far reported and includes some gastropod taxa not reported from any other seep, modern or ancient (Peckmann et al. 2002). Some of the gastropods (and most likely the new species of *Deltocyathus*) were dependent on some food source that was either restricted to or enhanced in some way by this particular seep.

Schwartz et al. (2003) reported specimens of an unidentified species of *Flabellum* associated with ancient methane-seep sites in the Maastrichtian-Danian Moreno Formation in California. It is suspected that *Flabellum* was attracted to the vicinity of the seep sites by the greater amount of food production by the seep paleocommunity (Schwartz et al. 2003).

Some coral species such as *Caryophyllia wynoocheensis* were apparently opportunists better able to take advantage of a variety of bottom conditions because it is also found at localities away from seeps. Living species of *Caryophyllia* commonly have wide geographic distributions (e.g., Cairns 1994).

It cannot be excluded that some of these corals, like the bivalves and tubeworms found at methane-seeps, had the ability to host and derive nutrients from endosymbiotic chemotrophic bacteria. This is, however, unlikely because this trophic strategy has not yet been demonstrated for living corals.

Acknowledgments

We thank A. Peckmann (Bremen) for the preparation of Figure 1. Simpson Timber Company provided access to their land. The following people participated in fieldwork resulting in this paper: G.H. Goedert, S. Klautsch, K.L. Kaler, F. Gill. We are grateful for the thorough reviews by M. Krautter (Hannover) and M. Taviani (Bologna) who greatly improved the manuscript. Special thanks to A. Freiwald (Erlangen) for editorial work. Financial support was provided by the ‘Deutsche Forschungsgemeinschaft’ through the DFG-Research Center for Ocean Margins, Bremen (contribution no. RCOM0115).

References

Gill GA, Coates AG (1977) Mobility, growth patterns and substrate in some fossil and Recent corals. Lethaia 10: 119-134

Hovland M, Thomsen E (1997) Cold-water corals - are they hydrocarbon seep related? Mar Geol 137: 159-164

Appendix 1

SYSTEMATIC PALEONTOLOGY
Order Scleractinia

Superfamily Caryophyllioidea Dana, 1846

Family Caryophylliidae Dana, 1846

Genus Deltocyathus Milne Edwards and Haime, 1848

Type species.—Turbinolia italica Michelotti, 1838, by monotypy.

Deltocyathus insperatus n. sp.
Figs. 2a, 3a-d

Description.- A small Deltocyathus with septa arranged in four cycles, appearing to have 48 septa in all specimens complete enough to count. Costae of unworn specimens have an uneven, smooth to sharply serrate appearance. Base of unworn specimens with a blunt central granule. Septa exsert, with S$_1$ being the most highly exsert, S$_2$ less so, and S$_3,4$ least exsert. Lateral septal faces with irregular arrangement of low, pointed to blunt spines.

Material.- Holotype, LACMIP 12981 (Peckmann et al. 2002: Fig. 3G); paratypes UWBM 97521-97523; referred specimen UWBM 97520.

Occurrence.- Found in only one methane-seep deposit on the Middle Fork of the Satsop River, Mason County, Washington, LACMIP loc. 17426 (= UWBM loc. B6781), Lincoln Creek Formation, Late Oligocene.

Etymology.- From Latin, insperatus, meaning surprising or unexpected, in reference to the occurrence in a methane-seep deposit.

Remarks.- Deltocyathus insperatus new species is similar to D. conicus and D. italicus in conical form, but the costae are less spinose. The septal faces of D. insperatus are also less spinose than those of D. conicus. Deltocyathus insperatus is a very small species, with the largest specimens all being less than 6 mm in diameter, and only 2.5 to 3.3 mm in height. There is no other fossil coral from western North America that can be confused with the new species. The only other West Coast species is D. whitei Durham, 1943, from the Paleocene age Lodo Formation in California, and it is much larger, with a flattened, discoid corallum. There is apparently no living species of Deltocyathus found in the eastern North Pacific Ocean (Cairns 1994).
Appendix 2

Locality descriptions

UWBM B6781: (= LACMIP loc. 17426) Lincoln Creek Formation, Late Oligocene
Methane-seep carbonate deposit at water level, east bank of the Middle Fork of the Satsop River, approximately 80 m south and 240 m east of the northwest corner of Sec. 32, T. 21 N., R. 6 W., Mason County, Washington. (= SR4 of Peckmann et al. 2002).

UWBM B6782: Lincoln Creek Formation, Early Oligocene
Very small methane-seep carbonate, less than 50 cm in diameter (as exposed in 2002), south bank of the Middle Fork of the Satsop River, approximately 800 m south and 310 m east of the northwest corner of Sec. 20, T. 21 N., R. 6 W., Mason County, Washington.
(= SR1 of Peckmann et al. 2002).

UWBM B6783: Lincoln Creek Formation, Oligocene? (float)
Methane-seep carbonate block found as float on a gravel bar in the Canyon River, SW1/4 SW1/4 NW1/4 of Sec. 36, T. 20 N., R. 7 W., Grays Harbor County, Washington.

UWBM B6784: Lincoln Creek Formation, Late Eocene - Early Oligocene
Solitary coral found in carbonate deposit (methane-seep?), north side of the Middle Fork of the Satsop River, at upstream end of bend in river, approximately 460 m south and 820 m west of the northeast corner of Sec. 20, T. 21 N., R. 6 W., Mason County, Washington.

LACMIP 5842: Lincoln Creek Formation, Late Oligocene
Fossils found as float on beach northeast of the townsitie of Knappton, north shore of the Columbia River, N½ N½ Sec. 9, T. 9 N., R. 9 W., Pacific County, Washington.

LACMIP 5843: Lincoln Creek Formation, Late Oligocene
Fossils found as float on beach northeast of the townsite of Knappton, north shore of the Columbia River, approximately 305 m south and 430 m east of the northwest corner of Sec. 9, T. 9 N., R. 9 W., Pacific County, Washington.