NEW EOCENE MARINE BIVALVES FROM BAJA CALIFORNIA SUR, MEXICO

RICHARD L. SQUIRES AND ROBERT DEMETRION
Department of Geological Sciences, California State University, Northridge 91330 and 8839 Katherine Avenue, Panorama City, California 91402

ABSTRACT—A new genus, a new subgenus, and five new species of pterioid bivalves are described from shallow-marine faunas in the middle lower to middle Eocene Bateque Formation in the vicinity of Laguna San Ignacio to about 105 km southward, Pacific coast of Baja California Sur, Mexico. Batequeus n. gen. is a medium-sized pectinid with equally convex valves, a short byssal notch, anterior auricles smaller than the posterior ones, the left valve with numerous very closely spaced radial riblets that show the imbricated growth lines very well, the right valve with about 30 low, flat-topped radial ribs that can be grooved, and intercalary ribs on both valves. It is only known from its type species, Batequeus mezquitalensis n. sp., which is from the middle Eocene part of the Bateque Formation. Spondylus batequensis n. sp., a very spinose species, is from the middle lower Eocene part of the Bateque Formation and is only the second reported Spondylus from the lower Eocene of the west coast of North America. Pycnodonte (Phygraea) pacifica n. sp., a species characterized by a radial sulcus that originates in the umbo area, occurs in both the middle lower and middle middle Eocene parts of the Bateque Formation. Phygraea has not been reported previously from the west coast of North America. Pycnodonte (Pegma) n. subgen. has a plicate left valve with a large attachment area (that can cover the entire valve) and a right valve that usually has an inflated smooth central area surrounded by plicate margins. It is only known from its type species, Pycnodonte (Pegma) bajaensis n. sp., which occurs in both the middle lower and middle Eocene parts of the Bateque Formation. Cubitostrea mezquitalensis n. sp., a strongly ornamented species, is from the middle middle Eocene part of the Bateque Formation and is the first occurrence of this genus from the west coast of North America.

INTRODUCTION

THE BIVALVES discussed in this paper were collected from three localities in the Bateque Formation on the Pacific coast of Baja California Sur, Mexico, between Laguna San Ignacio and Bahia San Juanico about 105 km to the south (Figure 1). Two of the localities, California State University, Northridge (CSUN) localities 1220b and 1220c, are along the same measured section in a canyon in Mesa La Salina, just south of Laguna San Ignacio. Details of the geology of locality 1220b have been previously described in Squires and Demetrion (1990). Spondylus batequensis n. sp. and Pycnodonte (Pegma) pacifica n. subgen. and sp. were found at this locality.

Locality 1220c is 160-170 m above the base of the measured section. Spondylus batequensis n. sp. and Pycnodonte (Phygraea) pacifica n. sp. were also found at this locality. The lithology and stratigraphy at locality 1220c are nearly the same as for locality 1220b. Very fine-grained sandstone is interbedded with fossiliferous lenses containing a slightly transported shallow-marine fauna. Associated planktonic foraminifers indicate the early Eocene Globorotalia aragonensis or G. pentacamerata Zone of Stainforth et al. (1975), which is equivalent to the P8 or P9 Zone as used by Berggren et al. (1985). Locality 1220c differs from locality 1220b in that the fossiliferous lenses are taxonomically less diverse. They lack colonial scleractinian corals, stromatolites, and the gastropod Velates perversus that are all common at locality 1220b. Immediately overlying the stratigraphic interval of locality 1220c are beds that contain Turritella andersoni, a species not present lower in the Bateque Formation. This gastropod is indicative of the middle lower Eocene provincial molluscan “Capay Stage” in California and southwest Oregon (Squires, 1988).

The third locality, CSUN 1293, is about 90 km south of the other two localities. It is on the south side of Arroyo Mezquital about 13.5 km south of the village of San Juanico. Only a 30-m-thick portion of the Bateque Formation is exposed here, and the formation is unconformably overlain by the Miocene Isidro Formation. (For a generalized geologic map of the area, see McLean et al., 1985.) Locality 1293 is near the base of the Bateque exposures in a 9-m-thick, very weathered, reddish-gray mudstone that contains extremely abundant discocyclinid foraminifers, abundant Cubitostrea mezquitalensis n. sp., and commonly occurring Batequeus mezquitalensis n. gen. and sp. Other mollusks occur in the mudstone but only as molds. A few single valves of Pycnodonte (Phygraea) pacifica n. sp. and only a single
left valve of Pycnodonte (Pegma) bajaensis n. subgen. and sp. were found in float at locality 1293. Possibly, they are from overlying, poorly exposed, very fine-grained sandstone beds higher in the Bateque Formation.

The delicate discocyclinids at locality 1293 are mostly complete, up to 22 mm in diameter, and show a growth series. Many of the Cubitostrea and a few of the Batequeus are articulated, and specimens of both show growth series. Absence of any indications of pre-burial transport indicates that the fossils found in the mudstone are in situ. According to Vaughan (1945), discocyclinids are indicative of warm waters no deeper than 100 m. The fossils at locality 1293 are interpreted to have been associated with a protected environment, or one that was below normal-storm wave base. In either case, mud could accumulate and the shells would remain in situ. The low-energy environment at locality 1293 contrasts with the higher energy environment associated with the mollusks found at localities 1220b and 1220c.

Calcareous nannofossils are common at locality 1293 and indicate the middle Eocene Discoaster bifax (CP14a) Zone of Okada and Bukry (1980), which correlates with the middle Eocene part of the provincial molluscan "Tejon Stage" at the CP13/CP14 boundary (Squires, 1987). Preservation and diversity are better than for age-equivalent assemblages in California, which suggests warmer (tropical?) paleotemperatures (M. V. Filewicz, personal commun.).

Abbreviations are as follows: CAS, California Academy of Sciences; CSUN, California State University, Northridge; IGM, Instituto do Geologia, Universidad Nacional Autónoma Museum de México; LACMIP, Natural History Museum of Los Angeles County, Invertebrate Paleontology Section.

SYSTEMATICA PALEONTOLOGY
Order PTERIOIDA Newell, 1965
FamilyPECTINIDAE Rafinesque, 1815
Genus BATEQUEUS n. gen.

Type species.—Batequeus mezquilatensis n. sp., the sole included species.

Diagnosis.—A medium-sized pectinid, slightly longer than high, with equally low-convex valves, short byssal notch, anterior auricles smaller than the posterior ones, left valve with numerous very closely spaced radial riblets that show the imbricated growth lines very well, right valve with about 30 low flat-topped radial ribs that can be grooved, and intercalary ribs (usually single ones) on both valves.

Remarks.—Of the groups of family Pectinidae Rafinesque, 1815, listed by Hertlein (1969), Batequeus n. gen. has more in common with the Chlamys Group than any other. Batequeus is interpreted to be only distantly related to the Chlamys Group because true Chlamys Röding, 1798, and related genera have a convex left valve and a less convex right valve. Superficially, the new genus resembles the Pecten Group of Hertlein (1969), but true Pecten Müller, 1776, and related forms have broad, flat, relatively unornamented ribs (not like Batequeus) and their byssal notch is very shallow (not like the right valve of Batequeus).

Etymology.—The new genus is named for the Bateque Formation.

BATEQUEUS MEZQUILATENSIS n. sp.
Figure 2.1–2.5

Diagnosis.—Same as for genus.
Description.—Medium sized; shell height up to 41 mm, slightly shorter than long; subcircular disk and moderately convex thin valves, equally low-convex valves; tendency for oblique growth in ornamentation in posterior region of each valve; anterior auricles shorter than posterior ones; hinge line about three-fifths length of disk; hinge plate raised and lens shaped; resilifier triangular and extending to hinge line, bordered on each side by a low ridge adjacent to a flattened area. Left valve with numerous scaly radial ribs, interspaces about same width with one or two intercalaries in later growth stage (beyond about 20 mm valve height), radial ribs tend to be more closely spaced on anterior and posterior regions of valve; anterior auricle with about six scaly riblets; posterior auricle with about eight scalary riblets; dorsal margin of hinge line smooth and bordered ventrally by low ridge, fairly deep groove separating this low ridge from cardinal crus (rarely two or more) on both sides of resilifier: interior of valve with numerous wide and flat, weak radial ribs that can be flatted at valve margin. Right valve with about 30 low, flat-topped radial ribs that may become grooved and may have a single rib in flat-bottomed interspaces in later growth stage (beyond about 20 mm valve height); radial ribs wider than interspaces; commarginal growth lines extremely fine; primary ribs give way posteriorly to cluster of 8–12 scalary radial ribs; anterior auricle with short byssal notch and about six riblets; posterior auricle with about eight scalary riblets; exterior surface of each auricle bent backwards into hinge-line area (except in resilifier area), causing interior dorsal margin of each auricle to be swollen and accentuated by vertical, scale-like growth lines; hinge line with two cardinal crus radiating...
from each side of apex of resilifier, uppermost one extending nearly entire length of hinge line, lowermost one much shorter and less prominent, fairly deep groove separating uppermost cardinal crus from swollen dorsal margin; interior of valve with about 23 wide, flat, weak radial ribs with fairly wide interspaces.

Remarks.—The left valve of *Bateauinus meziqalensis* n. sp. is very similar in ornamentation to some specimens of "*Chlamys*" *decemnaria* (Conrad, 1854, p. 151; 1840, p. 49, Pl. 24, fig. 2) from the upper Pliocene Yorktown Formation, Virginia and North Carolina. As shown in Gibson (1987, p. 65-69, Pl. 15, figs. 2, 3, 5-7, Pl. 16, figs. 3-5, Pls. 19, 20), there is a great deal of variation in "*C." decemnaria*. Some specimens (Gibson, 1987, Pl. 20, fig. 3) are remarkably similar to *B. meziqalensis*, except that in the new species the anterior auricle is smaller than the posterior. *Bateauinus meziqalensis* is the earliest documented Cenozoic pectinid from the west coast of North America. *Chlamys proavus* (Arnold, 1906, p. 52-53, Pl. 2, figs. 6-8; Moore, 1984, P. B19, Pl. 3, fig. 15) may be from the Paleocene Locatelli Formation, San Mateo County, middle California, but its stratigraphic position is uncertain (Moore, 1984). *Cyclopecten martinezensis* (Gabb, 1869, p. 198, Pl. 33, fig. 96; Moore, 1984, P. B8-B9, Pl. 1, figs. 9, 10) from the Martinez Formation, Contra Costa County, middle California (Moore, 1984) is earlier in age than *Bateauinus meziqalensis*, but *C.? martinezensis* is a propeamussid rather than a pectinid.

Etymology.—The specific name is for Arroyo Mezquital, along which the type locality of the new species is located.

Material.—About 100 specimens with nearly equal number of left and right valves, all of which show the interior. A few specimens are articulated.

Occurrence.—Middle Eocene CP 14a Zone of Okada and Buk-ry (1980), which correlates within the middle Eocene part of the "Tejon Stage" (Lutetian Stage). Bateque Formation, Baja California Sur, Mexico, locality CSUN 1293.

Repository.—Holotype, IGM 5058 (=plasto-holotype), LACMIP 8061; paratypes, IGM 5059, 5060 (=plasto-paratypes), LACMIP 8062, 8063; locality CSUN 1293.

Family SPONDYLIDAE Gray, 1826
Genus SPONDYLUS Linne, 1758

Type species.—By subsequent designation (Schmidt, 1818), *Spondylus gaederopus* Linne, 1758.

SPONDYLUS BATEQUENSIS n. sp.

Figure 2.6-2.12

Diagnosis.—*Spondylus* with left valve having about 12 radial ribs that may be spinose with interspaces containing usually three ribs with or without single intervening radial ribs; right valve (attached) with 10-12 usually fairly evenly spaced, strong, flattish radial ribs bearing upturned elongate spines with interspaces containing usually three spinose radial ribs.

Description.—Medium sized; shell up to 32 mm high (incomplete), subcircular; beaks central; shell thin, moderately inflated; left valve less convex than right valve. Left valve with about 12 primary radial ribs that may have short spines more common posteriorly; bottoms of short spines with longitudinal groove; interspaces between ribs with 1-3 smooth to spinose secondary radial ribs alternating with smooth to spinose tertiary radial ribs; secondary ribs may approach primary rib strength, especially in beak region; anterior auricle sloping (preservation?), with three ribs; small posterior auricle with two faint ribs; both auricles separated from rest of valve by somewhat swollen radial rib; hinge area poorly preserved with triangular ligamental pit elongate. Right (attached) valve with 10-12 usually fairly evenly wide-spaced, strong radial ribs with imbricated spines; spines flattish to spike-like with longitudinal groove on bottom; spines along anterior margin commonly strongest and commonly upturned; spiny nature of right valve produces "thorny" appearance; interspaces between strong radial ribs with 1-7 (commonly three) spinose imbricated ribs; anterodorsal part of right valve may have lamellose overgrowths (which represent the attachment area); small posterior auricle with two ribs, anterior auricle obscured by matrix; interior of valve showing numerous primary radial ribs separated by secondary ribs, all ribs extend from beak to ventral margin with ribs stronger, more flat-topped, and more uniform in size ventrally; hinge area not seen.

Remarks.—*Spondylus batequeensis* n. sp. is most closely allied to *Spondylus dumosus* (Morton, 1834, p. 59, Pl. 16, fig. 8, text-fig. p. 60; Dockery, 1982, p. 49, Pl. 14, figs. 1-9, text-figs. 33, 34.1) known from the lower Oligocene Red Bluff Formation, Mississippi and southwestern Alabama (Glawe, 1967; Dockery, 1982).

Spondylus batequeensis n. sp. differs from *S. dumosus* in the following features: 10-12 rather than 9-10 radial ribs, weaker radial ribs on the left valve, right valve interior with radial ribs throughout, and spinose secondary and tertiary ribslets over entire shell exterior rather than only on beak area. These differences become harder to discern on juvenile specimens (less than 30 mm shell height) and juvenile portions of adult specimens of *S. dumosus*. The evidence suggests that *S. batequeensis* is the ancestral species and some of its morphological traits are retained in the juvenile portion of *S. dumosus*. Their close relationship is further strengthened by the presence of a longitudinal groove along the bottoms of the flattish radial ribs on both valves.

The new species shows more affinity to Gulf Coast lower Oligocene species than to Cretaceous or Eocene species from the west coast of North America. *Spondylus striatus* Packard (1922, p. 422, Pl. 29) and *S. rugosus* Packard (1922, p. 422, Pl. 27, fig. 3, Pl. 30, fig. 2, Pl. 31, fig. 3) were present in southern California during the Late Cretaceous. These species lack spines. *Spondylus cf. S. striatus* in Sundberg and Riney (1984, figs. 2-13) from the Upper Cretaceous Lusardi Formation and Point Loma Formation in the San Diego area, southern California, resembles the new species somewhat but is much larger (up to 80 mm height), much less spiny, and the interribs are not spinose.

Spondylus batequeensis n. sp. is only the second reported *Spondylus* from the "Capay Stage" of the west coast of North America. *Spondylus carlosensis* Anderson (1905, p. 194, Pl. 13, fig. 1) has been previously reported (Baldwin, 1964, p. 11) from rocks in northwestern Oregon equivalent to the middle lower Eocene "Capay Stage." This species, however, has been reported (Vokes, 1939; Squires, 1984, 1989; Moore, 1987) most com-
monly from strata in California equivalent to the mostly middle Eocene “Domingene Stage” and “Transition Stage.” *Spondylus carlosensis* is only very obscurely spinose.

Spondylus cliftensis Hanna (1927, p. 278, Pl. 32, figs. 2, 7) is the only other *Spondylus* known from the Eocene of the west coast of North America. This species, known only from “Domende Stage” strata in southern California (Hanna, 1927), lacks spines. Similarly, *Spondylus perrini* Wiedey (1928, p. 138, Pl. 17, figs. 6, 7) is the only Oligocene species of *Spondylus* from the west coast of North America, and it lacks spines.

Etymology.—The specific name is for the Bateque Formation.

Material.—Twenty-one right valves (with nine showing the interior) and 21 left valves. Four of the 42 valves are articulated.

Occurrence.—Middle lower Eocene “Capay Stage” (Ypresian Stage). Bateque Formation, Baja California Sur, Mexico, localities CSUN 1220b and 1220c.

Repository.—Holotype, IGM 5061 (=plasto-holotype), LACMIP 8064; paratypes, IGM 5062–5066 (=plasto-paratypes), LACMIP 8065–8069; locality CSUN 1220b.

Family GRYPHAEIDAE

Subgenus PHYGRAEA Vyalov, 1936

Genus Pycnodonte (Phygraea) Vyalov, 1936

Type species.—By original designation, *Pycnodonte radiata* Fischer de Waldheim, 1835.

Subgenus PHYGRAEA Vyalov, 1936

Type species.—By original designation, *Gryphaea (Gryphaea)* sec. *Phygraea frauscheri* Vyalov, 1936 (=*Phygraea pseudovesicularis* Gümbel, 1861).

Pycnodonte (Phygraea) pacifica n. sp.

Diagnosis.—A *Phygraea* with radial sulcus originating in umbo area.

Description.—Medium to large sized; shell up to 100 mm high, ovate to quadrate, strongly inequivalved, opisthogyrate; both valves smooth or with low irregular growth-line warts; ligamental pit in both valves large and well defined to small and poorly defined; margin of commissural shelf prominent in both valves extending subparallel to shell margin from each side of ligamental pit, with posterior ridge stronger and more oblique. Left valve (rarely attached) moderately to very convex; umbo central, may serve as attachment area to substrate; posterodorsal margin commonly concave and geniculate; posterior radial sulcus originating in umbo area, weakly developed on specimens less than 60 mm high, more prominent with increasing size of specimen; vermiculate catachomata not very extensive but evident; adductor-muscle scar circular, situated just posterior and dorsal of center of right valve; band of junction of two valves on interior of right valve very wide in posterior area, becoming very narrow in anterior area; inner margin of band of junction marked by circular-shaped prominent ridge.

Remarks.—Specimens of the new species are most common at locality CSUN 1220c. The few specimens at locality CSUN 1293 are smaller.

According to Stenzel (1971, p. N1107), *Pycnodonte (Phygraea)* ranges from Cretaceous to Miocene and is worldwide. *Pycnodonte (Phygraea) pacifica* n. sp. is the first record of the subgenus on the west coast of North America.

Pycnodonte (Phygraea) pacifica n. sp. shows close affinity to both *Pycnodonte (Phygraea) wratheri* (Stephenson, 1936, p. 2–4, Pl. 1, figs. 1–4) from Upper Cretaceous (Santonian) strata in Texas and Alabama and to *Pycnodonte (Phygraea) pseudovesicularis* (Gümbel, 1861; Stenzel, 1971, figs. J83 1a–e) from upper Paleocene strata at Haunsberg, north of Salzburg, Austria. The new species differs from both in that it has a better defined radial sulcus, which originates in the umbo region rather than near the posterodorsal margin.

Pycnodonte (Phygraea) pacifica n. sp. superficially resembles *Ostrea haleyi* Hertlein (1933, p. 277–281, Pl. 18, figs. 5, 6; Givens, 1974, p. 45, Pl. 1, figs. 11–13; Squires, 1987, p. 58, fig. 97) from middle lower Eocene (“Capay Stage”) strata, southern California. The new species differs from *O. haleyi* in the following features: larger, broader shell; beaks not as in-turned, umbo ridge not as angulate, radial sulcus much better defined and originating in umbo area rather than in the posterodorsal region. Comparison between valve interiors cannot be made because such features are not known for *O. haleyi*.

Material.—Twenty-three left valves (with 12 showing the interior) and 10 right valves (with two showing the interior). Eight of the 33 valves are articulated.

Occurrence.—Middle lower Eocene “Capay Stage” (Ypresian Stage) to middle Eocene CP 14a Zone of Okada and Bukry (1980), which plots within the middle Eocene part of the “Tejon Stage” (Lutetian Stage). “Capay Stage”: Bateque Formation, Baja California Sur, Mexico, locality CSUN 1220c; “Tejon Stage”: Bateque Formation, Baja California Sur, Mexico, locality CSUN 1293.

Repository.—Holotype, IGM 5067 (=plasto-holotype), LACMIP 8070; paratype, ICM 5068 (=plasto-paratype), LACMIP 8071; locality CSUN 1220c.

Pegma n. subgen.

Type species.—*Pycnodonte (Pegma) bajaensis* n. sp., the sole included species.

Diagnosis.—*Pycnodonte* with left valve plicate and large attachment area that can cover entire valve; right valve usually with inflated, smooth central area surrounded by plicate margins.

Remarks.—The systematics of Gryphaeidae follow that of Harry and Dockery (1983) and Harry (1985). Of the four subgenera of *Pycnodonte* that Stenzel (1971) recognized, *Pegma* is...
most like *Pycnodonte* (*Pycnodonte*), especially in the shell interior features. *Pegma* differs, however, in having a plicate left valve, an inflated right valve, no radial sulcus, no auricles, and no hyote spines.

Harry and Dockery (1983) used an unnamed possible subgenus for two species of *Pycnodonte* from upper Eocene through lower Oligocene strata in the Gulf Coast, southeastern United States. These two species are discussed below. Each one may belong in its own subgenus, but both would be distinct from *Pegma* n. subgen.

Etymology.—Latin, *pegma*, shelf (for the commissural shelf on both valves).

Material.—The new subgenus includes only its type species, *Pycnodonte* (*Pegma*) *bajaensis* n. sp.

Occurrence.—Middle lower Eocene “Capay Stage” (Ypresian Stage) to the middle Eocene CP 14a Zone of Okada and Bukry (1980), which plots within the middle Eocene part of the “Tejon Stage” (Lutetian Stage).

Pycnodonte (Pegma) bajaensis n. sp.

Diagnosis.—Same as for subgenus.

Description.—Medium sized; shell up to 60 mm high, subcircular to elongate, umbones central, shell moderately thick; commissure plicate; hinge line in both valves fairly short; ligament opisthogyrate; ligamental pit in both valves small but well developed; vermiculata commocha usually very noticeable, may continue downward from ligamental area to lower margin of adductor-muscle scar; adductor-muscle scar subcircular, just posterior of center of each valve; commissural shelf fairly well developed to well developed with vesicular internal structure evident in some left-valve and some right-valve specimens; left valve (attached) flat bottomed to locally convex (depending on nature of substrate), attachment area large, can cover entire valve in some specimens, attachment area troughlike in some specimens, may be as long as entire valve; valve margins plicate, upturned into short, wall-like enclosures around valve; right valve usually with inflated smooth central area extending from umbo to venter, surrounded by variable number of narrow to moderately narrow plicate around valve margin; noticeable indentation between smooth area and plicate area.

Remarks.—Most specimens of the new species were found at locality CSUN 1220b. Only a single left valve was found at locality CSUN 1293. Cemintation of the left valves to the substrate usually encompasses the entire lower surface of the valves. Shell and coral debris commonly are the substrate, but a few specimens (e.g., Figure 3.5) have a troughlike attachment scar that strongly suggests possible attachment to a mangrove root. Extensive erosion can cause the right valves to be fairly flat without plicate.

Pycnodonte (*Pegma*) *bajaensis* is somewhat intermediate in morphology between *Pycnodonte* (subgenus?) *vicksburgensis* (Conrad, 1848, p. 126, Pl. 13, figs. 5, 37; Dockery, 1982, p. 53–55, Pl. 17, figs. 7–12, text-fig. 34.2) and *Pycnodonte* (subgenus?) *paroxis* (Lesueur MS in Dockery, 1982, p. 53, Pl. 17, fig. 13, Pl. 59, fig. 10, Pl. 60, figs. 1–3). *Pycnodonte* (subgenus?) *vicksburgensis* is known from upper Eocene through lower Oligocene strata in the southeastern United States, whereas *P. (subgenus?) paroxis* is known from lower Oligocene strata in Mississippi (Dockery, 1982). *Pycnodonte* (*Pegma*) *bajaensis* n. sp. differs from *P. (subgenus?) vicksburgensis* in the following features: weaker, more numerous ribs that are more closely spaced, central region on right valve smooth rather than ribbed, commoma not on entire margin, and attachment area of left valve much larger. The new species differs from *P. (subgenus?) paroxis* in the following features: plicae on left valve, right valve is not entirely smooth along margins, a plicate commissure, chomata not restricted to beak area, and commissural shelf is better developed. *Pycnodonte* (*Pegma*) *bajaensis* is substantially different enough from these two Gulf Coast forms to justify placement in its own subgenus.

Pycnodonte (*Pegma*) *bajaensis* is the only Paleogene oyster from the west coast of North America that has plicate valves (as well as a plicate commissure). These features were previously known in Miocene or younger oysters from the west coast of North America that belong to *Dendrostrea* and *Lopha* (Moore, 1987).

Etymology.—The species name is for Baja California, Mexico.

Material.—Sixty-two right valves and 10 left valves. All of the valves show the interior. No matched valves were found.

Occurrence.—Middle lower Eocene West Coast “Capay Stage” (Ypresian Stage) to middle Eocene CP 14a Zone of Okada and Bukry (1980), which plots within the middle Eocene part of the “Tejon Stage” (Lutetian Stage). “Capay Stage”: Bateque Formation, Baja California Sur, Mexico, locality CSUN 1220b. “Tejon Stage”: Bateque Formation, Baja California Sur, Mexico, locality CSUN 1293.

Repository.—Holotype, IGM 5069 (=plasto-holotype), LACMIP 8072; paratypes, IGM 5070–5072 (=plasto-paratypes), LACMIP 8073–8075; locality CSUN 1220b.

Family **Ostreidae** Rafinesque, 1815

Subfamily **Ostreinae** Rafinesque, 1815

Genus **Cubitostrea** Sacco, 1897

Type species.—By original designation, *Ostrea cubitus* Deshayes, 1832.

Cubitostrea mezquitalensis n. sp.

Diagnosis.—Cubitostrea with left valve having very strong, widely spaced radial ribs; right valve can be plicate or not, with anachomata around entire margin.

Description.—Small to medium sized; shell up to 78 mm long, strongly inequivalved, opisthogyrate, very crescentic to recurved; adductor-muscle scar subcircular to ovate, situated approximately one-third distance between hinge and branchiosternum in each valve; ligamental pit well developed in each valve; left valve (attached) with very strong but narrow, radial ribs; ribs number 20–25 in specimens of 30 mm length, separated by deep interspaces usually wider than ribs and crossed by commarginal growth rugae, branching into 2 or 3 radial ribs in posterior region of valve; left valve keeled in large specimens, valve margin strongly plicate, flat attachment scar usually only in umbonal area but can extend over the entire upper surface of left valve; short row of catanchomata pits in gutter on each side of hinge; ligamental area moderately deep; right valve slightly smaller than left, size discrepancy increasing posteriorly, convex in anterior half becoming flat to slightly concave posteriorly, mostly smooth except for commarginal growth squamae, valve margin (except for posterior) may be plicate or nonplicate; plicae best developed along ventral margin, fitting into corresponding plicate folds on left valve; plicate specimens may have low, broad radial ribs, usually extending only a short distance, rarely extending to umbo area; entire interior margin of right valve with anachomata, relic anachomata may be present in and adjacent to ligamental area.

Remarks.—Roughly equal numbers were found of same-size plicate or nonplicate right valves. The two forms are gradational (Figure 4.5, 4.6, 4.8, 4.9).

Cubitostrea mezquitalensis n. sp. closely resembles *Cubitostrea cubitus* (Deshayes, 1832, p. 365–366, Pl. 47, figs. 12–15; Coss-
mann and Pissarro, 1904–1906, Pl. 44, fig. 135-32; Stenzel et al., 1957, Pl. 9, fig. 6; Stenzel, 1971, figs. J17a, J116-1; Pomerol and Feugueur, 1974, Pl. 16, fig. 7) from upper Eocene (Bartonian Stage), Paris Basin, northern France. Although Stenzel (1971, p. N1141) mentioned that C. cubitus (the type species of Cubitostrea) does not have ribs on the right valve, some of the right-valve specimens of the LACMIP collection of C. cubitus from Bartonian Stage strata at Le Guépelle, Paris Basin, France, are plicate and do have small radial ribs along the entire margin of the valve (except the posterior end). One of these specimens, hypotype LACMIP 8279, is illustrated in Figure 4.10, 4.11. Collections of C. cubitus made by Squires from Le Guépelle also reveal that some of the right-valve specimens are plicate. A comparison between C. mezquitalensis and C. cubitus from Le Guépelle, Paris Basin, revealed that C. mezquitalensis differs in the following features: left valve with radial ribs that are
stronger and more widely spaced (20–25 rather than 30–40, in specimens of 30 mm length), right valve with stronger radial ribs, and right valve with anachomata around entire margin.

The geological range of Cubitosstrea has been reported by most workers as middle Eocene (Lutetian Stage) to middle Oligocene (Davies, 1971; Stenzel, 1971). The genus was widespread during the middle Eocene with common occurrences in the Gulf Coast region of the United States and in the Paris Basin, France. Ward (1985), however, recently reported the earliest known Cubitosstrea from the lower Eocene (Ypresian Stage) Nanjemoy Formation, Virginia. The middle Eocene (Lutetian Stage) Cubitosstrea mezquitalensis n. sp. is the first occurrence of this genus on the west coast of North America. Cubitosstrea mezquitalensis and Pycnodonte (Pegma) bajaensis n. subgen. and sp. are the only known Paleogene plicate oysters from the west coast of North America.

Etymology. — The specific name is for Arroyo Mezquital, along which the type locality of the new species is located.

Material. — About 150 well-preserved specimens with nearly equal numbers of right and left valves, all of which show interiors. Many specimens are articulated.

Occurrence. — Middle Eocene CP14a Zone of Okada and Bukry (1980), which correlates within the “Tejon Stage” (Lutetian Stage), Bateque Formation, Baja California Sur, Mexico, locality CSUN 1293.

Repository. — Holotype, IGM 5073 (=plasto-holotype), LACMIP 8076; paratypes, IGM 5074-5075 and 5105-5107 (=plasto-paratypes), LACMIP 8077-8078 and 8276-8278; locality CSUN 1293.

ACKNOWLEDGMENTS

R. S. Vernis and R. R. Quintana (Departamento de Geología, Universidad Autónoma de Baja California Sur, La Paz) kindly arranged permission for geological studies and paleontological collecting in Baja. M. C. Perrilliat (Instituto de Geología, Universidad Nacional Autónoma Museum de México) graciously provided type-specimen numbers. M. V. Filewicz and R. W. Fulwider (Unocal Corporation, Ventura, California) processed several rock samples and identified the planktonic foraminifera and calcareous nannofossils. H. Harry (Bellaire, Texas), L. R. Saul (Natural History Museum of Los Angeles County), and J. T. Smith (Palo Alto, California) gave valuable comments on identification and taxonomy. J. T. Smith provided initial locality data and specimens from the Arroyo Mezquital area. M. Saenz (California State University, Department of Geological Sciences) helped in collecting the Arroyo Mezquital specimens. L. M. Paredes-Mejia (Purdue University) was a most helpful liaison. J. Le Renard (National Institute of Agronomical Research, Versailles, France) guided the senior author to the Le Guépelle collecting area. G. L. Kennedy (Natural History Museum of Los Angeles County) allowed access to collections and provided the loan of specimens. D. T. Dockery (Mississippi Department of Natural Resources, Bureau of Geology) and L. W. Ward (Virginia Museum of Natural History) gave helpful and constructive reviews of the manuscript.

REFERENCES

Accepted 22 December 1989

APPENDIX

Localities.—Unless otherwise stated, the CSUN localities are approximately 1.25 km southeast of the intersection of 113°00'W and 26°45'N, San Jose de Gracia, Baja California Sur, Mexico, 1:50,000 quadrangle map (number G12A64), issued in 1983 under the authority of the Dirección General de Geografía.

CSUN 1220b—North side of a minor canyon, on an elevation of 120 m, on the west side of Mesa La Salina, 100 m above the bottom of a measured section of the Bateque Formation. = LACMIP 1220b

CSUN 1220c—On a traverse bearing due north from locality CSUN 1220b, 160-170 m above the bottom of the same measured section mentioned under locality 1220b.

CSUN 1293—North-facing, 35-m-high bluff on south side of Arroyo Mezquital, just south of dirt road leading to San Witz, which is 2 km northeast of Paris, France.

Richard L. Squires provided $100 in support of this article.