NOTES ON PALEogene TURRITELLAS, Venericardias, and Molluscan Stages of the Simi Valley Area, California

LouElla R. Saul
Department of Earth & Space Sciences
University of California, Los Angeles 90024

ABSTRACT
Revision of Turritella spp. and Venericardia spp. from the Paleogene of the Simi Valley area aids in defining the molluscan faunal sequence present there. This Paleogene section comprises the uppermost part of an unnamed Stage older than the "Martinez" Stage, the "Martinez" Stage, most of the "Meganos" Stage, probably the uppermost part of the "Capay" Stage, and the "Domengine" Stage. The molluscan faunas provide age information for shallow-water deposits not readily dated by other fossil disciplines.

INTRODUCTION
Range zones of turritellies provide an important means of age determination and correlations of shallow-water Upper Cretaceous and Tertiary marine sedimentary rocks in California. These rocks usually lack planktic foraminifers and often do not have adequate benthic foraminifers for reliable correlation. Nannoplankton are also usually missing from these sediments. It was upon molluscan faunas from such shallow-marine facies that the molluscan stages (Figs. 1 & 2) were based. These stages have been criticized for imprecise biostratigraphic limits and boundaries and improper nomenclature (Cowen, 1975, p. 31) at the same time that their existence, sequence, and recognizability have been confirmed. Occasionally some fortunate downslope transport of these shallow-water faunas into areas more favorable to planktic foraminifers and nannoplankton provides direct ties between the different zonations, but usually the correlations between the zonations are not quite that direct. The marine Paleogene section in the vicinity of Simi Valley is rich in turritellles and has at least a small portion of each molluscan stage above the Cretaceous-Tertiary boundary and below the "Transition" Stage. Correlations of Simi Valley area sediments based on planktic foraminifers and nannoplankton with other Early Tertiary West Coast sections are in good agreement with such correlations based on Turritella biozones and molluscan stages.

UNNAMED STAGE
The earliest turritellles from the upper Las Virgenes Sandstone and basal Santa Susana Formation in the Simi Hills are below those typical of the "Martinez" molluscan stage. These late T. peninsularis quaylei Saul (Pl. 1, fig. 2) suggest the top of an unnamed Stage roughly equivalent to the Danian (Fig. 1). This stage is better represented in the San Francisquito Formation near Warm Springs Mountain, Los Angeles Co., Calif.

"MARTINEZ" STAGE
Above the meagerly represented unnamed Stage T. peninsularis ANDERSON & HANNA is the most commonly encountered fossil. T. peninsularis occurs widely in California and Baja California (Saul, 1983) but, it has not been tied directly to foraminiferal and nannoplanktonic zones. It occurs below T. i. pachecoensis which is associated with P4 Zone Foraminifera at the base of the Lodo Formation, south of Panoche Creek, Fresno Co., Calif. In Poison Oak Canyon, Santa Susana Mts., it is found in fossiliferous cobbles in conglomerate lenses above the lowest occurrence of the Heliolithus kleinpellii Zone (Poore, 1976) (=CP5 Zone, Okada & Bukry, 1980) and is thus older than P4 = Planorotalites pseudomenardii Zone (see Fig. 1). In the Simi Hills, T. peninsularis ranges through 200m of the lower Santa Susana Formation — above T. p. quaylei and below T. infragranulata pachecoensis. A few meters above T. infragranulata pachecoensis in the Bus Canyon section, FINCH (1980) records Foraminifera of the P4 Zone. In the shallow-water section near Martinez, Contra Costa Co., from whence the "Martinez" Stage derives its name, T. peninsularis occurs 233m below Foraminifera assigned to the P4 Zone (Schmidt, 1975). T. infragranulata pachecoensis STANTON and T. infragranulata GABB are found 300m higher in the same Pacheco Syncline section (Saul, 1983, p. 35), and the "Martinez" Stage thus comprises the zones of T. peninsularis, T. i. pachecoensis and T. infragranulata.

Shallow-water mollusks of the T. infragranulata Zone are not common in the Simi Valley area. Deposits assignable to this zone are apparently too deep water to yield more than scraggly shallow-water faunas. The zone is better developed in the Santa Monica Mts. Shallow-water molluscan faunas there suggest that T. susanaensis NELSON is actually the apical portion of a T. infragranulata GABB and that T. u. infera, T. susanaensis, and T. infragranulata occur in this zone.

"MEGANOS" STAGE
Heitman (this volume) finds planktic foraminifers indicative of P5 and lower P6 Zones, and Filewicz & Hill (this volume) record CP8 Zone and probable CP9 Zone nannoplankton in the upper Santa Susana Formation. In these deep-water sediments only a few mol-lusks have been found. An undescribed Turritella (Pl. 1, fig. 12) of unknown affinities occurs in these beds. Toward the top of the Santa Susana, microfossils are less abundant and megafossils become more so. In the upper 100m a few thin fossiliferous stringers contain mainly turritellles. These are predominantly T. andersoni n. subsp. (Pl. 1, figs. 15-18) and T. u. infera MERRIAM (pl. 1, fig. 19). Although referred to T. u. infera, the specimens from the upper Santa Susana Formation have more rounded whorl profile and heavier ribbing than
Figure 1. Paleogene West Coast molluscan stages, turritellids and venericardias plotted against M.Y.B.P. scale, standard ages, planktic Foraminifera zones, and calcareous nannoplankton zones after Hardenbol & Berggren (1978, p. 219), Okada & Bukry (1980, p. 322) and Berggren, Kent, & Flynn (in press, fig. 3) with m.y. conversion from Dalrymple (1979). With the exception of Venericardia (P.) taliferro which is also known from the late Maestrichtian, the initial letter of a specific name indicates its earliest appearance.
Figure 2. Occurrence of turritellids and venericardias in Simi Valley area Paleogene deposits and the molluscan stages they indicate. Turritellids and venericardias are listed according to the water depth each lineage suggests.

<table>
<thead>
<tr>
<th>FORMATIONS</th>
<th>deepeSt</th>
<th>RELATIVE WATER DEPTH INDICATED BY MOLLUSCS</th>
<th>shallowest</th>
<th>MOLLUSCAN STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seape</td>
<td>Turritella uvasana stock</td>
<td>Turritella andersoni stock</td>
<td>Venericardia (Pacificor) hornii stock</td>
<td>Turritella buwaldana stock</td>
</tr>
<tr>
<td>"Stewart bed"</td>
<td>T. u. applinae</td>
<td>and forma secondaria</td>
<td>V. (P.) h. calafia</td>
<td></td>
</tr>
<tr>
<td>Llajas</td>
<td>T. a. susanae</td>
<td>T. andersoni lawsoni</td>
<td>T. b. susanaensis</td>
<td></td>
</tr>
<tr>
<td>Santa Susana</td>
<td>T. u. intera</td>
<td>T. andersoni n. subsp.</td>
<td>T. b. subuvasana crooki</td>
<td></td>
</tr>
<tr>
<td>Las Virgenes Sandstone</td>
<td>T. infragranulata</td>
<td>T. infragranulata</td>
<td>V. (P.) mulleri</td>
<td></td>
</tr>
<tr>
<td>Chatsworth</td>
<td>T. peninsularis</td>
<td>T. peninsularis n. subsp.</td>
<td>V. (P.) nelsoni</td>
<td></td>
</tr>
</tbody>
</table>

those from the type locality low in the Llajas Formation. T. buwaldana crooki is also present especially in the upper 50m of the Santa Susana Formation. Approximately 7.5m below the Llajas Formation is UCB loc. 7000. The Meganos age of the upper 100m of Santa Susana Formation was first proclaimed by Clark (1921) who based this assignment upon the locally abundant fauna from UCB loc. 7000. This fauna includes the shallow-water turritella T. megnosensis CLARK & WOODFORD (Pl. 1, fig. 13) and Venericardia (Pacificor) hornii susanaensis VERASTEGUI (Pl. 1, fig. 14).

The Meganos D fauna, from which the stage derives its name, does not have any representative of the T. andersoni line. Nor, although it has V. (P.) aragonia diabioensis VERASTEGUI, does it have a representative of the V. (P.) hornii line. It does have T. megnosensis CLARK & WOODFORD and specimens of T. uvasana infera MERRIAM, similar to those from the Santa Susana Formation. T. megnosensis has been referred to the T. reversa stock (Merriam, 1941, p. 39). This stock is represented in the "Capay" Stage by T. m. protumescens (Pl. 2, fig. 1). The most likely precursor for T. u. infera is T. stocki MERRIAM which is known only from the T. i. pachecoensis Zone. T. u. infera is present 50m below the occurrence of T. megnosensis. More common than T. u. infera in the upper Santa Susana Formation is T. andersoni n. subsp. (Pl. 1, figs. 15-18) which has been collected through the upper 90m of the Santa Susana Formation. Merriam (1941, p. 79) identified these specimens with T. a. susanae whose type locality (UCB loc. A-993) is in the "basal" Llajas Formation, at the same time noting that there is a difference in sculpture. Although more than 100 specimens of T. andersoni n. subsp. from the Santa Susana Formation have been examined, none has the
sulpture of the Llajas specimens. Some of the Santa Susana specimens are very close to T. andersoni DICKERSON, especially some from localities near the Llajas-Santa Susana contact suggesting that the uppermost Santa Susana Formation is late "Meganos" in age. A late "Meganos" age is also suggested by Merriam & Turner (1937, p. 93) in their discussion of *Ficopsis meganosensis* CLARK & WOODFORD.

"CAPAY" STAGE

All occurrences of *T. andersoni* and *V. (P.) hornii lutmani* are considered to be indicative of the restricted "Capay" Stage of Givens (1974, p. 23) which includes the range of the Turritella uvasana infera Fauna of Givens and excludes the "Upper Capay Stage" of Clark & Vokes (1936). It is in this restricted sense that "Capay" is used herein. *V. (P.) hornii lutmani* TURNER (Pl. 2, fig. 6) occurs with *T. andersoni* in the Roseburg Formation of Oregon (ascribed to Zone P7/8 by Miles, 1981, p. 90) and the lower Juncal Formation of the Pine Mountain area, Ventura Co., California (Givens, 1974, p. 16). In their definition of the "Capay" Stage, Merriam and Turner (1937) included the Llajas beds which carry *T. m. protumescens*. Also present in this fauna are *T. uvasana infera* MERRIAM (Pl. 2, fig. 4), which does not range higher than the "Capay" (Givens, 1974, p. 65) and *T. buwaldana crooki* MERRIAM & TURNER (Pl. 2, figs. 2-3). As restricted by Givens, the "Capay" Stage is equivalent to the zone of *T. andersoni*. *T. a. susanae* MERRIAM (Pl. 2, fig. 5) differs from *T. andersoni* mainly in the strength of the sculpture, but not in the placement of the spirals, and large collections of *T. andersoni* usually have some specimens with sculpture similar to *T. a. susanae*. The "Capay" fauna has been collected from a narrow stratigraphic interval at the base of the interfingerin "shallow-marine facies (Squires, 1981; this volume) and below the occurrence of *Turriteiia andersoni lawsonii* DICKERSON.

"DOMENGINE" STAGE

Turriteiia andersoni lawsonii DICKERSON and its variant *T. a. l. secondaria* MERRIAM ranges from just above the interval of interfingerin between the coastal alluvial-fan facies to the "Stewart bed" of the Llajas Formation (Squires, 1981; this volume). It, *T. u. applinae* MERRIAM, *T. buwaldana DICKERSON*, and *Venericardia (P.) hornii calafia* STEWART are indicative of the "Domengine" Stage (Givens, 1974; Givens & Kennedy, 1979). Filewicz and Hill (this volume) find CP12 Zone calcareous nanoplankton above and below the Llajas "Stewart bed" of Squires (1981; this volume). CP12 is correlated with upper P9 and lower P10 (Okada & Bukry, 1980; Berggren, et al., in press) (Fig. 1). *V. (P.) hornii calafia* is present in the Flournoy Formation near Glide, Oregon, which Miles (1981) indicates is also P10. It is also probably present — based on *V. (P.) oregonensis* VERASTEGUI (Pl. 2, fig. 9), which appears to be an immature *V. (P.) h. calafia* — in the underlying Lookingglass Formation. The type Domengine has *T. a. lawsonii*, and Poore (1978) finds *Discoaster sublophosis* = CP12 Zone in the Domengine Formation. Vokes (1939, p. 70) tentatively recognized *V. (P.) h. calafia* from the Domengine near Griswolds. In the San Diego area, the Ardath Shale yields *T. a. lawsonii* and *T. u. applinae* (Pl. 2, fig. 19) and has foraminifers correlative with P10/11 and calcareous nanoplankton of the CP12 Zone. *T. a. lawsonii* has been collected from near the base of the Mount Soledad Formation (Givens & Kennedy, 1979, p. 83), the probably deltaic deposits of which underlie the deeper-water Ardath Shale. The "Capay"-"Domengine" Stage boundary thus lies near the P9-10 boundary (probably within P8) and not as indicated by Miles (1981, p. 100) near the P9-10 boundary.

PLATE 1

Figs. 1-2. Turritellids of the unnamed Stage.
1. Turritella peninsularis quaylei SAUL, 1983; late form; x2; UCLA 58888; UCLA loc. 3111.
2. Mesalia martinezensis (GABB, 1869); x1; UCLA 59360; UCLA loc. 3111, Calabasas Quad., Simi Hills; top of Las Virgenes Sandstone. This species is also present in the "Martinez" Stage.

Figs. 3-11. Turritellas and venericardias of the "Martinez" Stage.
3-4. Turritella peninsularis ANDERSON & HANNA, 1935; x1; 58. UCLA 58907; UCLA loc. 2333, Pinyon Ridge, Valyermo Quad.; San Francisquito Fm. 64. UCLA 49512; UCLA loc. 2687, Calabasas Quad., Simi Hills; lower Santa Susana Fm. Photo by T. Susuki.
5. Turritella reversa WARING, 1917; x1; UCLA 59532; UCLA loc. 6547, Poison Oak Canyon, Santa Susana Fm.; fossiliferous cobble at Santa Susana Fm.
6. Venericardia (Venericardia) venturensis WARING, 1915; x.75; 59362; UCLA loc. 2689, Calabasas Quad.; Simi Hills; basal Santa Susana Fm. This species is also present in the unnamed Stage preceding the "Martinez".
7. Venericardia (Pacificor) nelsoni VERASTEGUI, 1953; x.75; UCBMP 32804; UCB loc. 3765, Calabasas Quad., Simi Hills; lower Santa Susana Fm. [Holotype of V. (P.) transversaria VERASTEGUI, 1953].
8. Venericardia (Pacificor) mulleri VERASTEGUI, 1952; x.75; UCLA 59137, Garapito Creek, Santa Monica Mts.; Coal Canyon Fm.
9. Turritella infragranulata GABB, 1864; x.75; UCLA 59391; UCLA loc. 6572, Garapito Creek, Santa Monica Mts.; Coal Canyon Fm.
10. Turritella infragranulata pacilocoensis STANTON, 1896; x.75; UCLA 58920; UCLA loc. 6583, Encino Reservoir, Santa Monica Mts.; Coal Canyon Fm.
11. Turritella ?buwaldana subuvasana NELSON, 1925; x2; UCLA 93961; UCLA loc. 3172, Calabasas Quad., Simi Hills, Santa Susana Fm.
12. Turritella n. sp.; x2; UCLA 59363; C1T loc. 531, Santa Susana Quad.; Santa Susana Fm., 242m below Llajas Fm.
13. Turritella meganosensis CLARK & WOODFORD, 1927; x1; UCBMP 37430; UCB loc. 7000, N of Las Llajas Canyon, Santa Susana Quad.; Santa Susana Fm., 7.5m below Llajas Fm.
14. Venericardia (Pacificor) hornii susanaensis VERASTEGUI, 1953; x.75; UCBMP 37431; UCB loc. 7000, N of Las Llajas Canyon Santa Susana Quad.; Santa Susana Fm., 7.5m below Llajas Fm.
15-18. Turritella andersoni n. subsp.; x1; "Oil Seep Canyon" = Chivo Canyon, Santa Susana Quad.; Santa Susana Fm., approx. 34m below basal Llajas Fm. 15. UCLA 59364. 16. UCLA 59365. 17. UCLA 59366. 18. UCLA 59365.
19. Turritella uvasana infera MERRIAM, 1941; x1; UCBMP 37429; UCB loc. 7100, N of Las Llajas Canyon, Santa Susana Quad.; Santa Susana Fm., 7.5m below Llajas Fm."