THE IDENTITY OF SESARMA HANSENI RATHBUN, 1897, A SUPPOSEDLY WEST INDIAN SPECIES, WITH S. DEHAANI H. MILNE EDWARDS, 1853, FROM THE WEST PACIFIC (DECAPODA, GRAPSIDAE)

BY

LAWRENCE G. ABELE

Florida State University, Department of Biological Science, Tallahassee, Florida, 32306, U.S.A.

INTRODUCTION

The status of several species of Sesarma from the western Atlantic has recently been reviewed. Chace & Hobbs (1969) presented diagnoses and illustrations of the West Indian species and showed that Sesarma americanum De Saussure, 1853 is a senior synonym of S. tampicense Rathbun, 1914, rather than a junior synonym of S. angustipes Dana, 1852 as suggested by Rathbun (1918). Abele (1972) reviewed the status of five nominal species of Sesarminae from the western Atlantic. He concluded that S. angustipes Dana, 1852 is a senior synonym of S. miersii iberingi Rathbun, 1918, rather than a senior synonym of S. roberti H. Milne Edwards, 1853 as suggested by Hartnoll (1965). The present report examines the status of Sesarma hansenii Rathbun, 1897.

Rathbun (1897) described the new species S. hansenii based on a single male specimen in the Copenhagen Museum. The only data accompanying the specimen indicate it came from “Vestindien”. Additional material of the species has never been taken in the West Indies, although several authors dealing with that fauna have listed the name. Through the courtesy of Dr. Torben Wolff, Copenhagen Museum, I was able to examine the unique holotype of S. hansenii. Study of the specimen and comparisons with other species revealed that it is conspecific with a very common West Pacific species, S. dehaani H. Milne Edwards, 1853. The holotype of S. hansenii is, in all probability, mislabeled and should not be considered a part of the West Indian fauna.

The holotype of S. hansenii is illustrated and some descriptive notes are presented.

Sesarma (Holometopus) dehaani H. Milne Edwards, 1853 (figs. 1, 2)

Grapsus (Pachysoma) quadratus - De Haan, 1835: 62, pl. 8 fig. 3 [not Cancer quadratus Fabricius].
Sesarma dehaani H. Milne Edwards, 1853: 184; Stimpson, 1858: 106; Heller, 1865: 62; Kingsley, 1880: 214; De Man, 1887: 612; Bürger, 1893, 615; Ortmann, 1894: 718; Stimpson, 1907: 134; Kemp, 1918: 235; Parisi, 1918: 111.
Sesarma (Holometopus) dehaani - Tesch, 1917: 143; Balss, 1922: 154; Urita, 1926: 19; Shen, 1932: 195, text-figs. 121-123, pl. 9 fig. 1; Sakai, 1934: 324; Sakai, 1936: 234, pl. 65 fig. 1; Sakai, 1939: 681-682, pl. 77 fig. 1; Sakai, 1965: 202, pl. 97 fig. 2.
Sesarma neglecta De Man, 1887: 643, 661; Tesch, 1917: 178.
Sesarma hansenii Rathbun, 1897: 92.
Sesarma (Holometopus) hanseni. Rathbun, 1918: 315, text-fig. 152, pl. 87 fig. 1; Chace & Hobbs, 1969: 179.

Material examined. — Holotype of *S. hanseni*; male, cb (carapace breadth) 16.5 mm; “Vestindien”; Copenhagen Museum.

4 males, cb 16.6 to 21 mm; Pacific Ocean, Formosa, Miao, Li Hsien; USNM (National Museum of Natural History) 123498.

Description of the holotype of *Sesarma hanseni*. — The carapace breadth is about 1.27 times its length. The frontal region is deflexed; it does not widen distally and is about 0.55 of the carapace breadth. A shallow median sinus is present. The interorbital area is divided into four distinct lobes. The outer orbital tooth is acute. There is a minute indentation posterior to the outer orbital tooth.

![Fig. 1. Holotype of Sesarma hanseni Rathbun, 1897. A, dorsal view of carapace; B, fifth pereiopod; C, dorsal view of right chela. Scale = 5 mm for A, 10 mm for B, C.](image)

The posterior portion of the carapace narrows distinctly slightly anterior to the midline. There are four oblique rows of granules on each side of the posterolateral portions of the carapace. The gastric and cardiac regions are distinct. The carapace is naked and sparsely punctate.

The eyes are well developed and the cornea is pigmented. The third maxillipeds gape widely and have an oblique, hairy ridge on the merus.

The chelipeds are subequal and robust. The merus has the margins granulate, almost serrate; the lateral surface is covered with short rows of granules; there is no distal inferior tooth. The carpus has two granular ridges present; one on the medial margin and the other on the dorsal surface. Short rows of granules are present lateral to the ridge on the dorsal surface. An elongate lobe is present at the lateral angle. The dorsal surface of the palm has a raised, granulate ridge.
which is bifurcate in the distal half and extends as a poorly defined ridge onto the
medial surface of the palm. A few large granules are present at the distal margin
of the palm. The lateral surface of the palm is covered with low, depressed
granules. The dorsal surface of the movable finger is covered with many small
granules. The fingers are slightly spooned at the dark colored tips. Each finger is
armed with about six unequal teeth.

There is only a single complete walking leg with the specimen. It is the last
(fifth pereiopod); the merus is longer than the other segments, its length is
about 2.3 times its width. The carpus is a little shorter than the propodus and is
unarmed. The propodus is armed with about eight black spines on the ventral
surface. The dactylus is shorter than the propodus and is armed with about two
small, black spines dorsally and about four ventrally.

Fig. 2. Apex of male gonopods of Sesarma dehaani H. Milne Edwards, 1853. A, D lateral and
medial views of male from Formosa, USNM 123498. B, C lateral and medial views of holotype
of S. hanseni. Scale = 1 mm.

The abdomen is damaged but it has been figured by Rathbun (1918: 316,
text-fig. 152a).

The gonopod is simple, the apex is extended and curved laterally. There is a
small expansion proximal to the distal portion of the dark colored endpiece.

Distribution. — China: Liaoting Peninsula (east), Kiangsu (Woosung, Shang-
hai), Fukien (Foochow, Amoy), Kwangtung (Whampoa). Hong Kong. Formosa
(Taiwan). Japan: Bosco Province to Kyusyu and Okinawa. Korea. (Shen,
1932; Sakai, 1965).

Habitat. — The species occurs along the banks of muddy streams growing with
grasses some distance from brackish water. It also occurs in rice fields where its
burrows cause some damage (Shen, 1932; Sakai, 1939).

Color. — Color notes are given by Stimpson (1907), and Shen (1932) and
a color plate is given by Sakai (1965, pl. 97 fig. 2).

Remarks. — The holotype of S. hanseni is slightly smaller than the available
specimens of S. dehaani but there is little doubt that the specimens are conspecific.
Dr. Lipke B. Holthuis, of the Leiden Museum, kindly compared the illustrations
of the gonopods of S. hanseni with those of the lectotype of S. dehaani (a male
specimen, cl 37 mm, cb 40 mm, from Japan, leg. P. F. von Siebold, 1823-1830;

Shen (1932) discussed variation in *S. dehaani*, especially regarding the number of teeth on the anterolateral margins. The majority of specimens have a slight emargination or tooth posterior to the outer orbital angle, while other specimens have none, two or three (Shen, 1932: 198, text-fig. 123). The tooth of *S. dehaani* is almost as well developed as that of *S. reticulatum* (Say, 1817) (see Williams, 1965: 221, fig. 205), the type species of the genus *Sesarma*. Two of the subgenera of *Sesarma*, *Sesarma* (type *S. reticulatum*) and *Holometopus* (type *S. baematocheir*), are differentiated by the presence (*Sesarma*) or absence (*Holometopus*) of a tooth posterior to the outer orbital tooth. The distinction, however, appears to be more a matter of convenience. *Sesarma dehaani* and *S. benedicti* Rathbun, 1897, for example, both have a slight emargination or tooth posterior to the outer orbital tooth yet both are included in the subgenus *Holometopus*. Among the American species of *Sesarma*, *S. cinereum* (Bosc, 1801-1802), *S. miersii* Rathbun, 1897, *S. angustipes* Dana, 1852, *S. biolleyi* Rathbun, 1906, *S. magdalenense* Rathbun, 1918 and *S. occidentale* Smith, 1870 form a very closely related group of species in the subgenus *Holometopus* while *S. benedicti* is just as closely related to *S. reticulatum* as to any of the above species. Serène & Soh (1970) recently split the genus *Sesarma* into about 19 genera, several of which are based on the presence or absence of teeth posterior to the outer orbital angle. It would seem, as the above authors noted, that additional characters are needed before this designation can be fully justified.

**ACKNOWLEDGEMENTS**

I thank Dr. Torben Wolff, Copenhagen Museum, for allowing me to examine the holotype of *S. hanseni* and Dr. R. Serène, National Museum of Singapore, for his comments on the manuscript. Dr. Serène kindly supplied photographs of *S. dehaani* from the Indo-Pacific for comparison and verified that the gonopods of *S. hanseni* and *S. dehaani* are identical. I thank also Dr. Lipke B. Holthuis, Leiden Museum, for his comments and for confirming the synonymy of *S. dehaani* and *S. hanseni* through examination of the type of the former species in the Leiden Museum. Messrs. C. Alan Child and Henry Roberts were most helpful during my visit to the National Museum of Natural History, Washington, D. C. A portion of this work was supported by the Department of Invertebrate Zoology, Smithsonian Institution. Dr. Robert H. Gore, Smithsonian Institution, kindly supplied several references which were unavailable to me.

**RÉSUMÉ**

Le réexamen de l'holotype de *Sesarma hanseni* Rathbun, 1897, décrit des Antilles, a révélé qu'il appartenait à l'espèce *Sesarma dehaani* H. Milne Edwards, 1853, du Pacifique occidental. *Sesarma hanseni* est par conséquent un synonyme subjectif de *Sesarma dehaani*. L'holotype de *S. hanseni* est, selon toute probabilité, mal étiqueté et ne devrait pas être considéré comme appartenant à la faune des Antilles.
LITERATURE CITED


Received for publication 22 January 1973.