Loerenthopluma Beschin, Busulini, De Angeli & Tessier, 1996
(Decapoda, Brachyura, Retroplumidae)
from the Oligocene of Hungary

Abstract - New material of Loerenthopluma lata Beschin, Busulini, De Angeli & Tessier, 1996
(Retroplumidae Gill, 1894) is reported from Oligocene strata of Hungary, extending both the stratigraphic and geographical distribution of the genus. Preservation of pereiopods and eye stalks provides new information on the appearance of the animal.

Key words: Decapoda, Retroplumidae, Oligocene, Hungary.

Riassunto - Loerenthopluma Beschin, Busulini, De Angeli, & Tessier, 1996 (Decapoda, Brachyura, Retroplumidae) dell’Oligocene dell’Ungheria. Nuovo materiale di Loerenthopluma lata Beschin, Busulini, De Angeli & Tessier, 1996 (Retroplumidae Gill, 1894) è segnalato nell’Oligocene dell’Ungheria, incrementando la distribuzione stratigrafica e geografica del genere. La conservazione dei pereiopodi e dei peduncoli oculari fornisce nuovo informazioni sull’anatomia dell’animale.

Parole chiave: Decapoda, Retroplumidae, Oligocene, Ungheria.

Introduction
The Retroplumidae Gill, 1894 is a relatively small deep-water family of brachyuran crabs. The family consists of eight genera, of which six are exclusively fossil (De Grave et al., 2009). A diagnosis of the family, including the fossil record, has been published by Schweitzer & Feldmann (2001). The taxonomic position to the extinct genera was discussed by de Saint Laurent (1989), Vega & Feldmann (1992), Beschin et al. (1996), Schweitzer & Feldmann (2001), McLay (2006), Feldmann & Portell (2007) and Armstrong et al. (2009). The oldest representative of the family is considered to be the genus Archaeopus Rathbun, 1908 known from Upper Cretaceous rocks of North America and Japan (Schweitzer &
Feldmann, 2001). According to Vega & Feldmann (1992; p. 148) *Archaeopus* gave rise to *Costacopluma* Collins & Morris, 1975, whose stratigraphic span extends from the Upper Cretaceous to the Eocene. However, there is no general agreement about the placement of *Archaeopus* within Retroplumidae (see e.g. Glaessner, 1969; McLay, 2006).

Today, the family is represented by only two genera occurring in the Indo-Pacific region, *Retropluma* and *Bathypluma* de Saint Laurent, 1989, which have been reported from muddy or sandy bottoms spanning the depth from 50 to 600 m (de Saint Laurent, 1989; McLay, 2006). The fossil record of Retroplumidae is similarly restricted to fine siliciclastic rocks (Schweitzer et al., 2002; p. 30).

Geological setting

The material described here is recovered from a borehole Mány-115 (Má 115), obtained ca. 2 km northwest of the village Mány in northern Hungary (Fig. 1). The borehole is built on Mány Formation, which is covered discordantly by Miocene (Sarmatian) or younger sediments (Anonymous, 1977). The Mány Formation itself is comprised mainly of alternating calcareous silt, argillaceous silt, sand and sandstone, with conglomerate coal stringers and variegated clay intercalations (Nagymarosy & Gyalog in Császár, 1997). According to Báldi (1983) the Mány Formation is of lower Egerian age (upper Oligocene), however, the recent revisions (Gyalog & Budai, 2004) demonstrated both Egerian and Kiscellian age of the Mány Formation.

The borehole Má 115 was drilled to the depth of nearly 400 m. The cores were drilled from the depth 316.3 m. The strata of Oligocene age extending from the depth 110.8 to 393.6 m are overlaid by Sarmatian (upper Miocene) sediments. Below the depth 393.6 m deposits of Eocene age occur (Anonymous, 1977).
The studied specimen was recovered in the depth interval of 372.5 - 375.8 m, thus, it is of Oligocene age. It comes from the strata where also large milioline foraminifera occur. This part of the section is very close to the Eocene succession, but there may be unconformity between the Eocene and Oligocene strata (I. Selmeczi, pers. comm. 2010), therefore more data are needed for the precise age determination.

Systematic Palaeontology

Order Decapoda Latreille, 1802
Infraorder Brachyura Linnaeus, 1758
Section Eubrachyura de Saint Laurent, 1980
Superfamily Retroplumoidea Gill, 1894
Family Retroplumidae Gill, 1894

Type Genus: *Retropluma* Gill, 1894

According De Grave et al. (2009) there are eight genera of the family Retroplumidae known. Their stratigraphic range and geographical distribution is summarized in Table 1.

De Saint Laurent (1989) argued for the distinction between two lineages of retroplumid crabs, elevating Retroplumidae to superfamilial level and designating a separate family Costacoplumidae to embrace *Costacopluma, Retrocypoda* and other Western Hemisphere genera described before the year 1989. She con-

Table 1 - Genera of the Retroplumidae Gill, 1894: their stratigraphic range and geographical distribution. / Generi appartenenti a Retroplumidae Gill, 1894: distribuzione stratigrafica e geografica.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Stratigraphic range</th>
<th>Geographic occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeopus Rathbun, 1908</td>
<td>Turonian - late Eocene</td>
<td>Canada, USA, Japan</td>
</tr>
<tr>
<td>Costacopluma Collins & Morris, 1975</td>
<td>Coniacian - early/middle Eocene</td>
<td>both Americas, W. Africa, India</td>
</tr>
<tr>
<td>Cristipluma Bishop, 1983</td>
<td>Maastrichtian</td>
<td>USA</td>
</tr>
<tr>
<td>Retropluma Gill, 1894</td>
<td>early Eocene - Holocene</td>
<td>Europe; Japan, Indo-Pacific</td>
</tr>
<tr>
<td>Retrocypoda Vía Boada, 1959</td>
<td>middle Eocene</td>
<td>Spain, Italy</td>
</tr>
<tr>
<td>Loerentheya Lörenthey in Lörenthey & Beurlen, 1929</td>
<td>middle Eocene</td>
<td>Hungary</td>
</tr>
<tr>
<td>Loerenthopluma Beschin et al., 1996</td>
<td>early Eocene - Oligocene</td>
<td>Belgium, Italy, Hungary (this paper)</td>
</tr>
<tr>
<td>Bathypluma de Saint Laurent, 1989</td>
<td>Holocene</td>
<td>Indo-Pacific</td>
</tr>
</tbody>
</table>
sidered Retroplumidae s.s. as embracing only the extant genera Retropluma and Bathypluma. Feldmann et al. (2006) re-examined all fossil genera referred to Retroplumoeida together with extant Retropluma and through documenting characters of the dorsal and ventral carapace and the abdomen, they concluded that no clear familial distinctions could be made. Their opinion in retaining the Retroplumidae as a discrete taxon embracing all eight genera was followed by De Grave et al. (2009) and is followed here as well. It should be mentioned, however, that McLay (2006) suggested Archaeopus might be a member of Palicidae Bouvier, 1898 (McLay, 2006; tab. 3) or a new family (McLay, 2006; p. 387). McLay also contested the placement of members of Costacopluma within Retroplumidae, arguing that not all of them comply with the definition of the Retroplumidae sensu de Saint Laurent (1989). Considering these inconsistencies in the opinions is beyond the scope of this paper.

Genus Loerenthopluma Beschin, Busulini, De Angeli, & Tessier, 1996

Type species: Loerenthopluma lata Beschin, Busulini, De Angeli, & Tessier, 1996, p. 89, fig. 3; T. 1, fig. 1, by original designation.

Included other species: Loerenthopluma sp. nov. van Bakel, Artal, Fraaije, & Jagt, in press.

Diagnosis: The diagnosis of the genus was recently emended by van Bakel et al. (in press).

Remarks: The species Loerenthopluma lata was described for the first time from the middle Eocene (Lutetian) of northern Italy (“Rossi” quarry of Monte di Malo, Vicenza) on the basis of two specimens; features of the dorsal carapace, venter, and chelipeds were described (Beschin et al., 1996). These authors noted its superficial similarity to Loerentheya carinata Beurlen in Lőrenthey and Beurlen, 1929, known only from a single specimen from Hungary, which is considered to be lost (for details see Beschin et al., 1996; p. 89). Loerenthopluma shows morphological affinities to the extant genera Retropluma and Bathypluma (Beschin et al., 1996; van Bakel et al., in press). Loerenthopluma has, however, long ocular peduncles (this paper) unlike the short ones in Retropluma and Bathypluma.

The presence of the genus Loerenthopluma in the Oligocene strata of Hungary (this paper) could speak for synonymization of the genera Loerentheya and Loerenthopluma. One should be aware of the incongruence between the description of Loerentheya carinata and its figure (Lőrenthey and Beurlen, 1929; p. 388, fig. 49); therefore, the conclusions made upon the figured sketch, which is of poor quality, should be considered as doubtful. For example, the frontal margin mentioned in the description as slightly S-shaped (characteristic also for Loerenthopluma) is figured as almost straight. However, without reexamination of the lost type material of Loerentheya further conclusions are not possible, and therefore retaining both above mentioned genera seems to be the wisest at the moment.

Recently the second species of Loerenthopluma was described as L. sp. nov. from lower Eocene (Ypresian) strata of northwest Belgium (van Bakel et al., in press).

The genus Loerenthopluma is known from the early Eocene to Oligocene of Europe.
Emended diagnosis: Carapace subrectangular in outline, flat; front very narrow with a small triangular rostrum; orbitofrontal margin very wide, distinctly sinuous, ending with a tooth directed forward; ocular peduncles long; carapace with three transverse ridges: two ridges almost parallel, and one in median position, oblique, sinuous, and divided into three parts; sternum wide; female abdomen triangular, with all segments free, carinate in median part, sixth with concave lateral margins,
enlarging posteriorly, telson rounded; merus of first pereiopod elongate, cylindrical; carpus small, rounded; propodus elongate, compressed laterally, fixed finger well developed; dactylus elongate; walking pereiopods long and slender; meri very long; dactyli slender with pointed tips.

Material: The described specimen is preserved within a well core and consists of a nearly complete dorsal carapace, whose left posterolateral margin is sawn off, and remains of the pereiopods and eye stalks (Figs. 2-4). The specimen is deposited in the Hungarian Natural History Museum in Budapest under the catalogue number M 2010.1.1.

Description: Carapace rectangular, wider than long, width equals 1.36 times the length including rostrum, weakly convex longitudinally, almost flat in transverse section; carapace with three transverse ridges, the maximum width situated at the medial ridge. Rostrum short, narrow, and triangular. Anterior margin very wide, sinuous, with broad, rounded supra-orbital projection. Anterolateral tooth well developed. Anterolateral margin slightly concave, posterolateral margin weakly convex. Frontal margin and lateral margins with fine denticulation. Posterior margin as wide as orbitofrontal margin, rimmed, convex.

Dorsal surface of carapace dominated by three sharp-crested, finely granulated transverse ridges. Anterior ridge almost parallel to the anterior margin, crossing the entire dorsal surface. Median ridge oblique, slightly sinuous, well developed at the lateral flanks only. Posterior ridge almost parallel to the anterior one, located in the

Fig. 3 - Loerenthopluma lata Beschin, Busulini, De Angeli, & Tessier, 1996; counterpart of M 2010.1.1, note the eye stalk (es) in upper right corner of the fossil. / **Loerenthopluma lata** Beschin, Busulini, De Angeli, & Tessier, 1996; controimpronta di M 2010.1.1, si noti il peduncolo oculare (es) nell’angolo superiore destro del fossile.

Abbreviations: P2-P4, second to fourth pereiopods; m, merus; c, carpus; p, propodus; d, dactylus; es, eyestalk. / Abbreviazioni: P2-P4, dal secondo al quarto pereiopode; m, merus; c, carpus; p, propodus; d, dactylus; es, peduncolo oculare.
posterior regions, divided by cardio-branchial grooves into three parts, the middle one being oriented more posteriorly.

Entire surface of carapace finely granulated, regions weakly marked; cervical groove located in the depression between anterior ridge and median ridge, dividing the gastric regions from branchial ones. Mesogastric region with two blunt tubercles; urogastric region with two parallel gastric pits.

Eye stalks very long, the preserved portion being one fourth of the carapace width, finely granulated. No other details discernible.

All pereiopod segments granulated, merus of 2nd to 4th pereiopods being the longest, dactyli long, slender and sharp-tipped.

Chelipeds, venter, and abdomen unknown in present specimen.

Measurements: Maximum carapace width of the specimen: 24.5 mm (33.2 mm after reconstruction; see Fig. 5); maximum carapace length: 23 mm (24 mm after reconstruction); length of the preserved part of the eye stalk: 8 mm.

Occurrence: The species was known only from the middle Eocene (Lutetian) of northern Italy (Beschin et al., 1996). The present report from Hungary extends slightly the geographic distribution and stratigraphic range of the species as well. Thus, the species is known from the middle Eocene to Oligocene of Europe.

Discussion: There is a minor difference between the material from Italy (Beschin et al., 1996) and material presented herein: The W/L (without rostrum) ratio in the Hungarian specimen is 1.48, in the Italian 1.53. The Italian specimen is relatively wider. The arrangement of ridges and form of the fronto-orbital margin in the present material are the same as in the Italian specimens. We consider the differences as intraspecific variation.

Fig. 4 - Detail of the eye stalk of *Loerenthopluma lata* Beschin, Busulini, De Angeli, & Tessier, 1996; counterpart of M 2010.1.1. / Dettaglio del peduncolo oculare di *Loerenthopluma lata* Beschin, Busulini, De Angeli, & Tessier, 1996; controimpronta di M 2010.1.1.
Loerenthopluma lata can be differentiated from Loerenthopluma sp. nov. mainly in having the greatest carapace width more anteriorly, less prominent outer orbital corners and a narrower base of the rostrum (van Bakel et al., in press). The rostrum of L. lata is triangular in shape, whereas that of L. sp. nov. is distinctly spatulate. van Bakel et al. (in press) mentioned also the presence of gastric pits in L. sp. nov. as a possible additional differentiating character. The gastric pits are, however, present in the Hungarian material.

The present material exhibits some features of the genus Loerenthopluma which were previously unknown, namely the eye stalks and walking pereiopods. The type material (holotype MCZ 1476 and paratype MCZ 1477) exhibits the chelipeds and venter (Beschin et al., 1996; fig. 3). The material of Loerenthopluma sp. nov. exhibits proximal parts of walking pereiopods and also portions of the fifth pair of pereiopods (van Bakel et al., in press).

Based on the material from Italy and Hungary, it is possible to reconstruct the overall morphology of Loerenthopluma lata (Fig. 6).

The resemblance of some carapace features of Loerenthopluma to Retropluma was previously mentioned by Beschin et al. (1996) and van Bakel et al. (in press). Present material gives some more evidence for close morphological relationship between these two genera. The morphology of pereiopods of Loerenthopluma is very similar to that of Retropluma. Therefore, the unknown fifth pair of pereiopods of Loerenthopluma lata in Fig. 6 is reconstructed mostly on the basis of the genus Retropluma.

Fig. 5 - The carapace of Loerenthopluma lata Beschin, Busulini, De Angeli, & Tessier, 1996; left part of the reconstruction is mirror image. / Carapace di Loerenthopluma lata Beschin, Busulini, De Angeli, & Tessier, 1996; la parte sinistra del carapace è un'immagine specular.
Notes on palaeobiogeography and palaeoecology of retroplumids

The retroplumids known from Eocene strata show considerable generic diversity. From eight known genera, five have Eocene occurrences: *Costacopluma*, *Loerentheya*, *Loerenthopluma*, *Retrocypoda* and *Retropluma*. The Eocene has been considered as a time of high evolution and low extinction rates within the Decapoda (Schweitzer, 2001; Feldmann & Schweitzer, 2006). It is also significant that many taxa which evolved during this period were endemic to their regions of origin (Feldmann & Schweitzer, 2006). This can be postulated also for the retroplumids *Retrocypoda*, *Loerentheya* and *Loerenthopluma*, which are genera known exclusively from Eocene or Oligocene strata of Spain, Hungary, Italy, and Belgium (Vía Boada, 1959; Lörenthey & Beurlen, 1929; Beschin et al., 1996; van Bakel et al., in press; this paper).

The genera *Loerenthopluma* and *Retropluma* appear to have originated at the beginning of the Eocene in southern Europe. The genus *Loerenthopluma* with its oldest occurrence from the Ypresian (lower Eocene) of northwest Belgium (van Bakel et al., in press) persisted in Europe at least until Oligocene time (this paper). The oldest known occurrence of *Retropluma* is *R. gallica* Artal, van Bakel, & Castillo, 2006, reported from the Ilerdian (lower Eocene) of southern France (Artal et al., 2006). The genus persisted in Europe at least until the late Miocene (Fraaije et al., 2005). The genus is today represented by seven species (Ng et al., 2008) of Indo-Pacific and North-Western Pacific distribution (McLay, 2006).

Concerning the presence of *Costacopluma* in the rocks of Eocene age, it is the youngest record of the otherwise quite well known genus occurring during the Upper Cretaceous and Paleocene times (Feldmann & Portell, 2007; Armstrong et al., 2009).

Considering the palaeobiogeography of the entire Retroplumidae is beyond the scope of this paper and will be discussed elsewhere.
Artal et al. (2006) discussed ecological preferences of both fossil and extant members of *Retropluma* and concluded they have always been adapted to the soft bottoms on inner to outer continental shelves. It seems that *Loerenthopluma* had similar preferences. Beschin et al. (1996) reported two specimens from Cava Rossi di Monte di Malo (NE Italy), which is considered to represent rather shallow water facies with soft muddy/sandy bottom (Beschin et al., 1998). Present material of *L. lata* is preserved within the layer of fine clay material with presence of bivalves and large foraminifers.

Acknowledgements

We wish to thank following individuals: Barry W. M. van Bakel (Oertijdmuseum De Groene Poort, Netherlands) and Carrie E. Schweitzer (Kent State University, Ohio) read an earlier draft, provided valuable comments, and improved English; Alessandro Garassino (Museo Civico di Storia Naturale, Milano, Italy) kindly translated passages in Italian; Antonio De Angeli (Museo Civico “G. Zannato”, Montecchio Maggiore, Italy) provided additional information on *Loerenthopluma lata*; Ildikó Selmeczi (Geological Institute of Hungary, Budapest) gave lithological information about Mány Formation and discussed the age of the studied specimen; and Colin L. McLay (University of Canterbury, New Zealand) provided some items of literature. We thank also Rodney M. Feldmann (Kent State University, Ohio) and Antonio De Angeli for careful reviews.

References

Ricevuto: 30 dicembre 2009
Approvato: 26 gennaio 2010