Galicia marianae n. gen., n. sp. (Crustacea, Decapoda, Astacidea) from the Oxfordian (Upper Jurassic) of the Southern Polish Uplands

Alessandro Garassino* and Michal Krobicki**

*Invertebrate Palaeontology Department, Natural History Museum, Corso Venezia, 55, 20121 Milano, Italy
<agarassino@tin.it>

**Department of Stratigraphy and Regional Geology, University of Mining and Metallurgy, al. Mickiewicza 30, 30-059 Kraków, Poland <krobicki@geol.agh.edu.pl>

Abstract

*Galicia mariana*e n. gen., n. sp. is described from the Middle Oxfordian limestones of the Southern Polish Uplands, in vicinity of Kraków. *Glyphia (Glyphia) muensteri* (Voltz), together with numerous dromiaceous prosopid crabs, are associated with the decapod lobster described in this study. The decapod fauna occupied sponge megafacies, well known from throughout Europe, from Portugal, Spain, France, Germany, Poland and Romania. The decapods prefer inter- and/or peri (or extra)-bioherm environments surrounding the cyanobacteria-sponge bioherms.

Streszczenie

Z utworów wapieni płytowych środkowego oksfordu okolic Krakowa opisano nowy gatunek (należący do nowego rodzaju) dziesięcionoga homara *Galicia mariana*e, oraz gatunek *Glyphia (Glyphia) muensteri* (Voltz, 1835), znany wcześniej z obszaru Polski centralnej. Zilustrowano również zespół krabów (z rodziny Prosopidae) który dominuje w obrębie małych bioherm wapieni gąbkowych, znajdujących się w obrębie wapieni płytowych tych samych stanowisk (np. dolina Szklarki). Opisana fauna homarów preferowała paleosrodowiska śródbiohermowe lub peryferycznych części bioherm cjanobakteryno-gąbkowych, szeroko rozprzestrzenionej w Europie oksfordzkiej megafacji gąbkowej znanej w całej Europie (od Portugalii, poprzez Hiszpanię, Francję, Niemcy, Polskę aż do Rumunii).

Key words: Crustacea, Decapoda, Astacidea, Upper Jurassic, Poland

Introduction, geological setting and palaeoecological remarks

The fossil record of decapod crustaceans seems to be very poor when compared to that of most other shelled marine invertebrates. This is mainly due to their poor preservation potential (Plotnick, 1986). Decapod crustaceans have a higher chance to be preserved on low-energy bottoms when they are quickly buried and preserved mainly in non-bioturbated sediments (Müller *et al.*, 2000).

In the Middle Oxfordian limestones of the Southern Polish Uplands, astacidean decapod crustaceans (glyphiod lobsters and erymids) occur together with numerous dromiaceous prosopid crabs (Krobicki, 1994; Krobicki and Müller, 1998a, 1998b; Müller *et al.*, 2000).

Material described in this paper comes from the Middle Oxfordian platy limestone distributed in vicinity of Kraków (Southern Poland). The Oxfordian outcrops which yielded the examined decapod crustaceans occur near Krzeszowice city (Fig. 1): Szklary village – Dolina Szklarki valley, Nowa Krystyna – in an abandoned quarry in the
forest south of Krzeszowice, and Rudno village – small hill near a new highway from Kraków to Katowice that is covered by vegetation now but cropped out during construction of this road.

The Upper Jurassic, Oxfordian carbonates, were sponge megafacies and were wide-spread in Europe during that time. They now crop out from Portugal through Spain, France, Germany and Poland to Romania (Trammer, 1982; Gaillard, 1983; Matyja and Wierzbowski, 1995). The megafacies was formed in a deep-neritic environment parallel to the northern margin of the Tethys (Leinfelder et al., 1994).

In the vicinity of Kraków, the Middle Oxfordian strata are developed in two facies (Fig. 2). They begin with (i) well-bedded micritic, platy limestone which contain numerous ammonites, rare benthic fauna (brachiopods, bivalves), and macruran decapod crustaceans. Subsequently, the massive limestones (ii), representing small sponge bioherms (about 2 m high and 3-4 m wide), were developed within these limestone (Figs. 2, 3). Numerous crabs (e.g. Pithonoton serratum (von Meyer), P. insigne (von Meyer), Nodoproson spinosum (von Meyer)) have been discovered in these small, loose sponge bioherms (Fig. 4), while isolated glyphoid lobsters (Glyphia (Glyphia) muensteri (Voltz)) exclusively occur within platy limestone surrounding the bioherms (Dolina Szlarki valley – Fig. 3; Müller et al., 2000). Similar relations also were recognised in the Polish Jura and the SW margin of the Holy Cross Monutains. At these locations, numerous crab fossils (mainly prosopids) were described from the Middle and Upper Oxfordian (Barczyk, 1961; Collins and Wierzbowski, 1985) where separate findings of the same lobster species also occur within the platy limestone (Förster and Matyja, 1986). In the Upper Oxfordian (Kraków area), the massive facies (ii) dominates volumetrically and interfingers with the next facies (iii) of well-bedded limestone with abundant cherts (Fig. 2). One of the oldest sponge bioherms which occurs within platy limestone, exists in the Dolina Szklarki (Fig. 2). Siliceous sponges formed the cyanobacteria-sponge bioherm structures which are characterised by a rigid framework during bioherm growth (Matyszkiewicz, 1994,
Fig. 2. Geological sequence of the Jurassic strata in the vicinity of Kraków (after Matyszkie, 1994, simplified) with position of described outcrops.

Numerous crabs have been discovered in the cavities of these framework structures. The crabs are associated with brachiopods (e.g. Terebratula substriata (Schlotheim)), serpulids and rare bivalves.

Intensive burrowing and bioturbation are common within platy limestone (e.g. ichnogenus Thalassinoides). Glyphooids and astacids might have created some or even most of these burrows, although none is found within the burrows (Hoffmann and Uchman, 1992; Bromley, 1990). The structures prove that the deeper parts of the sediment were colonized by burrowing animals. The intensive bioturbation of the top layer led to its

Fig. 3. View of the Dolina Szklarki valley outcrop with good visible small cyanobacterial-sponge bioherm (A) which occur within platy limestones (B) (geologist for scale).

homogenisation. The lack of an initial lamination also results from bioturbation. Burrowing behaviour is widespread among lobsters (e.g. within the modern genera Nephrops Leach and Homarus Weber and Cretaceous Linuparus White (Pemberton et al., 1984), and numerous crabs (mainly species of Uca Leach, Ocypode Weber, Sesarma Say, Macrophthalmus Desmarest, and others (Frey et al., 1984; Dworschak and Rodrigues, 1997). On the other hand, the decapod remains preserved within their burrows are very rare: several species of the lobster Glyphia von Meyer (Sellwood, 1971; Bromley and Asgaard, 1972), shrimps of Callichirus? (Stilwell et al., 1997), Cambarus? Erichson (Hasiotis and Mitchel, 1989), modern species Axianassa australis Rodrigues and Shimizu (Dworschak & Rodrigues, 1997), and crabs (e.g. Longusorbis Richards, Antarctidromia Förster et al.) (Richards, 1975; Förster et al., 1987).

The Oxfordian decapod crustaceans belong to two different life-style groups. The first group is represented by strong, mobile, benthic animals (glyphooids and astacids) and the second one (crabs) belongs to reef-symbiotic weak mobile decapods. Small prosopods might
have used the small sponge bioherms as hiding places from potential predators, especially during soft-shelled moulting stages and used the reef/bioherm rigid framework structures for their protection (Müller et al., 2000). On the contrary, large lobsters, having large appendages and stronger carapaces, could better move on soft carbonate mud in the inter- and/or peri-bioherm environments surrounding the bioherms. They probably produced the Thalassinoides burrows in the soft sea-floor.

The depth of water in which the Oxfordian cyanobacteria-sponge bioherm thrived is still matter of discussion (Schorr and Koch, 1985; Wirsing and Koch, 1986; Matyja and Wierzbowski, 1996; Matyszkiewicz, 1997, 1999; Pisera, 1997; Matyszkiewicz et al., 2001). The facies of cyanobacteria-sponge bioherms was initially regarded as the sediment on a deeper part of the shelf (Dżulyński, 1952). The lack of fauna diagnostic of bathymetry additionally hindered the unequivocal determination of depth during sedimentation of these builds. The most recent stratigraphic and sedimentologic investigations lead to the conclusion that these carbonate builds occurred at a depth of a few hundred metres (Gradziński, 1972; Matyja and Wierzbowski, 1996; Matyszkiewicz, 1997, 1999; Pisera, 1997; Matyszkiewicz et al., 2001).
Preservation and material

The macruran decapod crustaceans of Kraków vicinity are preserved in platy limestone and exhibit three-dimensional preservation. The hard consistency of the surrounding rock makes their preparation difficult.

The examined sample consists of six specimens: four belong to Glypha muensteri (Voltz, 1835) and two belong to Galicia mariana n. gen., n. sp. (family Erymidae Van Straelen, 1924). The samples are deposited in the palaeontological collection of Department of Stratigraphy and Regional Geology of the University of Mining and Metallurgy in Kraków. Since G. muensteri (Voltz, 1835), has already been the subject of several papers (Voltz, 1835, Glaessner, 1929, Cardinet, 1942, Martin, 1961, Förster and Matyja, 1986), this species will be not discussed taxonomically in this study.

Systematic Palaeontology

Infraorder Astacidea Latreille, 1802
Family Erymidae Van Straelen, 1924
Genus Galicia n. gen.

Type species: Galicia mariana n. sp.

Etymology: The trivial name alludes to Galicia Province, historical name of Southern Polish region.

Description: As for the type species.

Diagnosis: Subcylindrical carapace; short rostrum without supra- and subrostral teeth; well developed cervical groove from which gastro-orbital groove arises; postcervical groove joins branchiocardiacd groove lower on flank; hepatic groove well developed; well developed inferior groove arises from postcervical groove.

Galicia mariana n. sp.
(Figs. 5-8)

Etymology: The trivial name alludes to Marian Lowczowski, donor of the holotype.

Types: The holotype, (KSGR/AGH/K/4), a complete carapace (Fig. 7) from Rudno; and paratype, (KSGR/AGH/K/5), an incomplete specimen (Fig. 8) from the same locality, are deposited in the Department of Stratigraphy and Regional Geology of the University of Mining and Metallurgy in Kraków.

Measurements: KSGR/AGH/K/4:
Cl (length of carapace) = 4 cm
R (length of rostrum) = 4 mm

Ch (height of carapace) = 2 cm
G (length of gastric region) = 1.5 cm
Ca (length of anterior cardiac region) = 5 mm
Cp (length of posterior cardiac region) = 2 mm
B (length of dorsal branchial region) = 6 mm

Occurrence: Two specimens collected from Rudno, Oxfordian (Upper Jurassic).

Description: Carapace subcylindrical in lateral view with ventral margin rising slightly in anterior third. Short triangular rostrum, without supra- and subrostral teeth. Cervical groove deep, curving slightly anteroventrally at rounded junction with antennal groove. Well developed branchiocardiacd groove extends parallel to cervical groove, curving slightly anteroventrally at rounded junction with inferior groove. Short, reduced postcervical groove, displaced forward and joining branchiocardiacd groove lower on flank. Gastro-orbital groove shallow and narrow, arises from medium part of

Discussion: Many fossil families belong to infraorder Astacidea Latreille, 1802, known from Lower Triassic (Feldmann et al., 2002): Astacidae Latreille, 1803, Cambaridae Erichson, 1846, Chilopodidae Thody and Babcock, 1997, Chimaerastacidae Amati et al., in press, Cricoidoscelosidae Taylor et al., 1999, Erymidae Van Straelen, 1925, Mecocharidae Van Straelen, 1925, Nephropidae Dana, 1852, Palaeopalaemonidae Brooks, 1962, Parastacidae Huxley, 1878, Platychelidae Glaessner, 1969, Pemphricidae Van Straelen, 1928, Protoastacidae Alberecht, 1983 and Glyphidade Zittel, 1885. At present, following the classification by Feldmann et al. (2002), the infraorder Astacidea Latreille, 1802 includes three families (Mecocharidae, Pemphricidae and Glyphidae) ascribed to the infraorder Palinura Latreille, 1803 by Glaessner (1969). Among the families of the infraorder Astacidea only the family Erymidae exhibits some morphological characters, such as subcylindrical carapace with deep cervical groove, weak gastro-orbital groove, branchiocardiac and postcervical grooves almost parallel, short rostrum and flat abdomen with triangular somites. These traits are also observable also in Galicia and for this reason can be ascribed to this family.

The family Erymidae Van Straelen, 1924 is known from Lower Triassic to Upper Cretaceous and contains nine genera: Clytiella Glaessner, 1931 from the Carnian (Upper Triassic) of Austria; Clytiopsis Bill, 1914 from the Scythian (Lower Triassic) of Europe; Enoploclita McCoy, 1849 from the Carnian (Upper Triassic) to the Paleocene? and the Eocene? of Europe, Africa, Antarctic Peninsula, United States, Canada, South America, Australia and Madagascar; Eryma von Meyer, 1840 from the Sinemurian (Lower Jurassic) to the Cenomanian (Upper Cretaceous) of Europe, Africa, Iran, Madagascar, Lebanon, Antarctic Peninsula, Canada, United States and South America; Olinpectarcs Van Straelen, 1924 from the Bajocian (Middle Jurassic) of France; Palaeastacius Bell, 1850 from the Aalenian (Middle Jurassic) to the Cenomanian (Upper Cretaceous) of Europe, Antarctic Peninsula, United States, South America and Australia; Paracleptiopsis Oravec, 1962 from the Carnian (Upper Triassic) of Hungary; Phylctisoma Bell, 1863 from the Sinemurian (Lower Jurassic) to the Campanian-Maastrichtian (Upper Cretaceous) of Europe, Madagascar

![Fig. 7. Galicia marianae n. gen., n. sp., holotype, KSGR/AGH/K/4, (× 2.5).](image-url)
and Canada; *Protoclytiopsis* Birstein, 1958 from the Permotrias of Russia (Feldmann et al., 2002; Garassino, 1996).

Among these species, only *Eryma*, *Olinaecaris*, *Palaeastacus* and *Phlyctisoma* dated to Jurassic, are comparable with the new genus. *Eryma* and *Phlyctisoma* distinguish from *Galicia* for the different course of cervical and branchiocardiac grooves, running parallel without meet like as in the new genus. The bad state of preservation of *Palaeastacus* and *Olinaecaris* do not allow a comparison with *Galicia*. On the basis of these considerations, we justify the institution of *Galicia* because the junction between postcervical and branchiocardiac grooves can be observed only in this genus, within the family *Erymidae*. In fact, in all the above mentioned genera, the postcervical and branchiocardiac grooves extend parallel one another and do not meet.

Acknowledgments

We would like to express our gratitude for palaeontological amateurs: Agata Jurkowska (Kraków), Marian Łowczowski (Kraków) and Piotr Kratochwil (Siemianowice Śląskie) and professional palaeontologist Prof. Jerzy Malecki (Kraków) to have donated most of the fossil material for this study, supplying precise locality informations. At last, we wish to thank R. M. Feldmann, Geology Department, Kent State University (Ohio – USA) for his useful advice in the draft of manuscript, careful review and criticism of manuscript. This study has been financially supported by University of mining and Metallurgy (MK), grant N° 11.11.140.888. Photographic materials by L. Spezia, line drawings by F. Fogliazza.

References

Bromley, R. G. and U. Asgaard (1972), The burrows and

Dana, J. D. (1852), Crustacea. *United States exploring expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes, U.S.N.*, 13, 1-1620.

Förster, R., A. Gaźdicki, and R. Wrona (1987), Homolodromiid crabs from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. *Palaeontologia Polonica*, 49, 147-161.

Matyszkiewicz, J. (1997), Microfacies, sedimentation and some aspects of diagenesis of Upper Jurassic sediments from the elevated part of the Northern peri-Tethyan Shelf: a comparative study on the Lochen area (Schwäbische Alb) and the Cracow area (Cracow-Wielu Upland, Poland). *Berliner Geowissenschaftliche Abhandlungen*, E21, 1-111.

Zittel, K. A. von (1885), Handbuch der Paläontologie, 2(2), 525-721.

Manuscript accepted on April 16, 2002