Annotated catalogue of brachyuran type specimens (Crustacea, Decapoda, Brachyura) deposited in the Muséum national d’Histoire naturelle, Paris. Part I. Podotremata

Régis CLEVA
Danièle GUINOT
Laurent ALBENGA
Muséum national d’Histoire naturelle,
Département Milieux et Peuplements aquatiques, USM 403,
case postale 53, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
cleva@mnhn.fr

KEY WORDS
Muséum national d’Histoire naturelle,
crabs, Brachyura, Podotremata,
Homolodromiidae, Dromiidae,
Dynomenidae, Homolidae,
Poupiniidae, Cyclodorippidae,
Cymonomidae, Phyllotymolinidae,
Raninidae, type specimens.

ABSTRACT
The greatest part of the types of the brachyuran crabs (Crustacea, Decapoda) in the Crustacea collection of the Muséum national d’Histoire naturelle, Paris, is already catalogued on registers and is to be gradually published. This first annotated catalogue lists the nominal species belonging to the Podotremata (i.e. crabs with coxal male and female gonopores, and spermathecae): families Homolodromiidae, Dromiidae, Dynomenidae, Homolidae, Poupiniidae, Cyclodorippidae, Cymonomidae, Phyllotymolinidae and Raninidae. The names of the taxa are presented in their original combination. The erroneous references to specimens as “types” have been noted and corrected in conformity with the International Code of Zoological Nomenclature. The types of a total of 104 species are listed herein, out of about 370 known species of podotreme crabs. Photographs of most of the type specimens are also provided. A bibliography and an index are included. An electronic catalogue is available at: http://coldb.mnhn.fr/coldb/form.do?model=CRUSTACE.wwwcrustace.wwwcrustace.

RÉSUMÉ
Les types de crabes brachyures (Crustacea, Decapoda) de la collection de crustacés du Muséum national d’Histoire naturelle à Paris sont pour la plupart
MOTS CLÉS
Muséum national d’Histoire naturelle, crabs, Brachyura, Podotremata, Homolodromiidae, Dromiidae, Dynomenidae, Homolidae, Poupiniidae, Cyclodorippidae, Cymomonidae, Phyllotymolinidae, Raninidae, spécimens types.

INTRODUCTION
The International Code of Zoological Nomenclature, hereafter referred to as the Code, states in its Recommendation 72F (ICZN 1999) that “every institution in which name-bearing types are deposited should [...] publish lists of name-bearing types in its possession or custody”. These type specimens, which constitute an objective and reference material in the creation of new taxa, play a central role in taxonomy and other fields of biology.

The publication of this first catalogue resulted from the need to ensure that the types are documented, clearly marked, and safely preserved. This list of type material was established not as a “routine work”, not merely for curatorial convenience, but...
prepared after numerous taxonomic revisions of the Podotremata, in great part based on the MNHN collection, undertaken during the past decades in the Laboratoire de Zoologie (Arthropodes), presently included in the Département Milieux et Peuplements aquatiques: Tavares (1991a, b, 1993a, b, 1994, 1996, 1997); McLay (1993, 1999, 2001a, b); Guinot (1993a, b; 1995); Guinot & Richer de Forges (1995); Guinot & Tavares (2003); McLay & Ng (2004). The compilation follows a careful examination of all specimens, their labels and the appropriate literature to elucidate the correct names of the taxa. The catalogue has also facilitated the renovation of the historic dry collection which is still in progress, the reorganization of the alcohol collection, and the databasing of the type material.

The Crustacea Collection

Collection dates are unknown for many of the early lots, and there is no information on how specimens were first preserved. Such information became available from the late 18th century and during the 19th century, when material was collected by many well-known expeditions, including the numerous and famous voyages of the French naturalists travellers, or by individual collectors (see Bauchot et al. 1990) and from other sources, such as gifts and exchanges. The whole carcinological alcohol collection has grown rapidly, particularly thanks to the large amount of material accumulated since 1976 by the numerous MUSORSTOM French cruises (“Tropical Deep-Sea Benthos” since 2001). The MNHN currently possesses the most important collection of tropical deep-water crustaceans in the world. A detailed curatorial history of the arthropods collections was provided by Vachon (1956).

The MNHN’s collection contains both dry and alcohol preserved material. A large part of the specimens collected before 1860-1870 were preserved
dry, except for those that were posteriorly rehydrated for examination.

The dry brachyuran specimens of the MNHN were generally glued by their ventral surface on a piece of elder that was attached to a cardboard placed on the bottom of a box. A box contained one or several specimens (lot). The early boxes had glass sides and glass top supported by a metallic frame (Fig. 1A), or were constructed with orange cardboard sides fixed to a glass top (Fig. 1B). Information on the specimens (name, origin and rarely other details) was handwritten on the cardboard base. These “fixed labels” were meticulously calligraphed in black ink italics. The old boxes were progressively replaced by easier-to-open, all-plastic boxes after the separation of the specimens from the old glue. Most specimens are kept in place by pins to the base, a thin layer of cork (Fig. 1C, D). There are approximately 5000 lots in the dry collection, currently stored in plastic trays placed on metal racks in the basement of the Zoothèque, a subterranean building located in the Jardin des Plantes of the MNHN.

The alcohol material was originally placed in cylindrical glass jars with a heavy base and covered by a circular glass plate attached to the rim of the jar with a sealing compound. Some of these cylinders are still in use, in particular for specimens in exhibitions and public lectures (Fig. 2A). Clamp-top jars, first used for temporary storage, are currently used for scientific specimens, the rubber rings (which deteriorated after a rather short time of contact with alcohol) being replaced with ones of a resistant material (Fig. 2B). Other types of jars are used in the alcohol preserved collection (Fig. 2C). Ethyl alcohol at a 70-75% concentration is currently used. Type specimens are distinctly marked with...
Catalogue des Crustacés par Arachnides et by insects exposés dans les galeries du Muséum d'histoire naturelle de Paris, par P. A. Latreille.

Classe des Crustacés

Porcaria

C. Crabe. I. Crang. Fab.

C. charae-fous. C. operculina. Fab.

3 individus.

Nota: Compositores, que espérons que serán aclarados en lo que respecta a la misma especie, no por no estar completa, se puede afirmar que no hay.
red auto-adhesive paper discs (dry specimens) or red adhesive tape (dry and alcohol preserved specimens). The largest part of the alcohol material is presently housed in the basement of the Zoothèque, in a room separated from the dry collection. A smaller number of jars are stored in a special room of the former Laboratoire de Zoologie-Arthropodes.

CATALOGUING
The history of cataloguing by the MNHN is difficult to trace. The oldest catalogues dealing with Crustacea (dated 1807 and 1814), handwritten by P. A. Latreille, are deposited in the Entomology library, under the reference A 53 1 and A 54 1 to A 54 4 (Figs 3; 4).

A new cataloguing system was initiated during the 1960s by Jacques Forest. It is the first inventory catalogue in which the lots of the MNHN Crustacea are numbered. At the same time a card file by species was prepared for all Brachyura, listing dry and alcohol lots for each species. The card file, however, remains incomplete due to the increase of the collection in the last decades and limitations of time and personnel.

MATERIAL AND METHODS
The present catalogue of brachyuran type specimens was made by checking the hard-copy registers and comparing the data with the labels accompanying the lots in an effort to complete or correct the available information. All relevant literature was then consulted. The electronic catalogue number is the same as that attributed in the hard-copy volumes. Identification of the type specimens is particularly difficult in the case of the old collection, which may lead to incorrect designations and the misapplication of the Code. Definitions of the type specimens must strictly follow the recommendations of the Code (ICZN 1999).

The practice of highlighting the type material was not always followed for long. However, in recent decades, special attention was paid to specimens or samples which were supposed or suspected to represent type material. A crucial task was to decide which samples, even if not labelled as such, actually represent the material upon which the author based the original description of a new nominal species, thus representing the type or type series. This is especially important in the case of the dry collection and early publications where the types were not designated. Evidence was obtained by carefully re-examining the labels, specimen presentation (glue, wire- or wood-sticks remnants) or in using reliable sources such as the name of the collector, the date of the supposed collection, and the original publication in which measurements and figures were provided. Conversely, specimens indicated as types have been proved to be incorrectly labelled.

Several difficult cases were encountered. For instance, a lot consisting of a single specimen may be presumed to represent the holotype if there is no indication that the specimen is a type and without any mention in the original description that it was based on a single individual. But this is merely based on a presumption. Further investigations could have shown that the specimen in question was not the only one in the type series because another lot or single specimen perhaps existed, either not yet recorded in the MNHN or deposited in another institution.

A good example is the presence of part of the Guérin-Méneville crustacean collection in the ANSP. Spamer & Bogan (1992, 1993a) provided a list of “the types of 47 taxonomically available species” of Crustacea (Spamer & Bogan 1992: 32) and made subsequent designations of several holotypes. For the species that were “recovered” as presumed types in Philadelphia, Spamer & Bogan (1993b: 87, 91) “retain these names in their historical context and avoid the subjectivity of revisions of artificial systematics”. Such a situation is problematical for many Guérin-Méneville crabs because part of the same material had been deposited originally in the MNHN. Similarly, original material collected by Alcide d’Orbigny, in South America, and described by H. Milne Edwards & Lucas (1842-1844) (see Guinot & Cleva 2002) and part of the collections of Eydoux & Souleyet (1842) are deposited in the MNHN, but part of the material is also present in Philadelphia where “a preponderous number of the older specimens were donated by Thomas B. Wilson,
Fig. 4. — First page of the handwritten catalogue of Crustacea of Latreille, referenced A 54 1, dated 1807.
including 513 dry lots (and 40 alcohol-preserved lots in the Guérin-Méneville Collection)” (Spamer & Bogan 1992: 11). Specimens from the Guérin-Méneville collection deposited in the MNHN were designated as syntypes, holotypes and lectotypes by subsequent revisionary works. However, specimens from the same collection deposited in the ANSP were similarly designated as types to “reintroduce the Academy’s crustacean holdings to the scientific community and to outline the history of crustacean research here, the birthplace of American carcinology” (Spamer & Bogan 1993b: 87). The 2003’s amendment (ICZN 2003) to the Code (ICZN 1999) recommends not to designate lectotypes for mere curatorial purposes. This demonstrates that a sound knowledge of the eventual selections of types is absolutely necessary during curatorial preparation of a catalogue and that the documentation of the collections in other institutions must be known by curators and researchers alike.

Gifts and exchanges of material, often of syntypes, offered another challenge. Some syntypes sent to the RMNH, by way of H. Milne Edwards and V. Audouin, have led sometimes to the publication of new names by W. de Haan. This was not problematic because a careful and detailed catalogue of the decapod crustaceans housed in the RMNH has been published (Fransen et al. 1997).

There can be several potential problems for old material. In that case the selection of a lectotype for a particular species is often necessary if some authors designated a holotype (ICZN 1999: Art. 74.6). The decision that a particular specimen is actually the original one used in the description of the species must be made after detailed historical and scientific investigations of the material in question. When a lectotype or neotype was designated from several specimens grouped in one lot, the type material was separated from the lot, generally by retaining the original catalogue number. Another catalogue number was assigned to the remaining individuals of the lot.

This catalogue is arranged systematically by subsections, and then by superfamilies, families and subfamilies, each family listing genera and then species by alphabetical order (Guinot 1993b; Tavares 1998; Guinot & Tavares 2003). The names of the taxa are presented in their original combination. Type specimens of invalid species (as junior synonyms, junior homonyms, unjustified emendations, unnecessary substitute names, or suppressed names) are also listed. In that case, the current status is specified, as far as known. No other synonyms are provided.

The families in this first catalogue belong to the podotremate brachyuran crabs, characterised by male and female gonopores located on the coxae of the pereopods, i.e. the Homolodromiidae, Dromiidae, Dynomenidae, Homolidae, Poupiniidae, Cyclodorippidae, Cymonomidae, Phyllotymolinidae, and Raninidae. Whereas the monophyly of the Brachyura is currently not much in question, the consensus about the division of the Brachyura in two sections, Podotremata Guinot, 1977 and Eubrachyura Saint Laurent, 1980, is debatable (Martin & Davis 2001; Guinot & Quenette 2005).

The reference containing the original description of each species or where syntypes, lectotype or neotype were designated or selected is provided. Problematical aspects of various lots are explained in some cases. The condition of individual specimens or lots of specimens is noted when appropriate, the absence of information meaning that the specimen(s) is (are) in good condition.

The original label of the old collection, when available, is always mentioned, with all the data in original spelling (generally in French). The geographic name cited follows that in use when the specimen was collected, and written on the label. In the past, the collector and exact date of collection were often not indicated, and the provenance was frequently a country rather than a precise locality. Other information is placed in the remarks, based on official published source(s), with the citation of the most recent reference providing a complete description of the types.

Geographic names in English follow the orthography given in the Atlas of the World (National Geographic Society 2005).

Original specimens used for species’ description, i.e. type specimens that are recorded in the original publication or subsequent literature as being present in MNHN collection, may have not been traced for the catalogue. For instance, many
dry specimens indicated “C.M.” (“Collections du Muséum”) in the H. Milne Edwards’ *Histoire naturelle des Crustacés* (1834-1837) and probably representing the type specimens have been found and catalogued, but some seem to be lost and were thus not databased.

Labels of many of the old specimens, dry or in alcohol, mention “Coll. A. Milne Edw., 1903”. This does not mean that the material was collected by A. Milne-Edwards but indicates, as far as we know, that the material was included in the MNHN collection at this date, perhaps during its reorganization. It is referred in the present paper as “Collection of A. Milne Edwards 1903”.

The types of 104 species in total are listed herein, out of about 370 known species of podotreme crabs. Photographs of all type specimens (damaged specimens excepted) are provided. The photograph of each specimen is indicated as a figure number.

ABBREVIATIONS

Measurements, given in millimeters (mm), refer to carapace length × carapace at its maximum width including teeth or spines if present. The following abbreviations are used in the text:

coll. collected by;
det. identified by;
G1 first male pleopod (or first gonopod);
G2 second male pleopod (or second gonopod);
juv. juvenile;
leg. donated by;
mxp3 third maxilliped;
ov. ovigerous;
P1-P5 first to fifth pereopods;
stn station.

Institutional abbreviations

Most material is deposited at the MNHN. The register number consists of MNHN followed by B (for Brachyura) and a number, viz. “MNHN-B6919”. When part of the types are not held by the MNHN, the institutions where they are deposited are abbreviated as follows:

<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSP</td>
<td>Academy of Natural Sciences of Philadelphia</td>
</tr>
<tr>
<td>BMNH</td>
<td>The Natural History Museum, London</td>
</tr>
<tr>
<td>MCZ</td>
<td>Museum of Comparative Zoology, Harvard University, Massachusetts</td>
</tr>
<tr>
<td>MNHN</td>
<td>Muséum national d’Histoire naturelle, Paris</td>
</tr>
<tr>
<td>MZUSP</td>
<td>Museu de Zoologia da Universidade de São Paulo</td>
</tr>
<tr>
<td>NSMT</td>
<td>National Science Museum, Tokyo</td>
</tr>
<tr>
<td>NTM</td>
<td>Northern Territory Museum of Arts and Science, Darwin</td>
</tr>
<tr>
<td>QM</td>
<td>Queensland Museum, Brisbane</td>
</tr>
<tr>
<td>RMNH</td>
<td>Nationaal Natuurhistorisch Museum, Leiden</td>
</tr>
<tr>
<td>SMF</td>
<td>Natur-Museum Senckenberg, Frankfort/Main</td>
</tr>
<tr>
<td>USNM</td>
<td>National Museum of Natural History, Smithsonian Institution, Washington, DC</td>
</tr>
</tbody>
</table>

CATALOGUE OF BRACHYURAN TYPE SPECIMENS

Subphylum CRUSTACEA Brünnich, 1772

Order DECAPODA Latreille, 1802

Infraorder BRACHYURA Latreille, 1802

Section PODOTREMATA Guinot, 1977

Subsection DROMIACEA De Haan, 1833

Superfamily HOMOLODROMIOIDEA Alcock, 1900

Family HOMOLODROMIIDAE Alcock, 1900

Dicranodromia crosnieri Guinot, 1995

(Fig. 5A)

Dicranodromia crosnieri Guinot, 1995: 202 (in key), 227, figs 5A, 23a-c, 24A, B.

HOLOTYPE (by original designation). — MNHN-B6919, Madagascar, *Vauban*, stn 143, 13°45.8’S, 47°38’E, trawl, 430-700 m, 29.II.1975, A. Crosnier coll., ♂ 9.0 × 7.0 mm, carapace, P1 and P5 detached.

Dicranodromia felderi Martin, 1990

(Fig. 5B)

PARATYPES. — MNHN-B22699, West Indies, E of Dominica, *Oregon*, stn 5928, 19°38’N, 61°12’W, 585 m, 4.III.1966, gift from USNM, IV.1993 (ex USNM 252206), 1 ♂ 18.7 × 15.7 mm, 1 ov. ♀ 25.9 × 22.0 mm, both specimens with carapace damaged (broken); abdomen of ov. ♀ detached.
Remarks

Holotype (by original designation) USNM 252204, same data as paratypes, ♂ 21.0 × 17.9 mm.

Dicranodromia foersteri Guinot, 1993
(Fig. 5C)

Dicranodromia karubar Guinot, 1993
(Fig. 5D)

Dicranodromia mahieuxii A. Milne-Edwards, 1883

Dicranodromia ovata A. Milne-Edwards, 1880

Dicranodromia nagai Guinot, 1995
(Fig. 6A)

REMARKS
The lectotype is an ovigerous female 25.0 × 19.0 mm, first figured by Bouvier (1896: figs I-II, 10-12, 17 II), then by A. Milne-Edwards & Bouvier (1902 [pro parte]: only figs 5, 6 and pl. 2, figs 2-12, 15, 16, pl. 3, figs 2, 4). This lectotype (damaged) is deposited in MCZ (MCZ 6510); only its eggs are deposited in the MNHN (MNHN-B24325). Also see Martin (1990: 715-718), Guinot (1995: 235, 242-250).

Dicranodromia pequegnati Guinot, 1995
(Fig. 6B)

Dicranodromia pequegnati Guinot, 1995: 235 (in key), 239, figs 28b-d, f, 29a, b.

HOLOTYPE (by original designation). — MNHN-B21682, off Western Sahara, Talisman, stn 72, 25°39’N, 16°02’W (cited as “18°22'” on the label), 882 m, sand, corals, shells, 9.VII.1883, ov. ♀ 11.0 × 9.0 mm (with two large eggs under the abdomen), carapace, abdomen, and remaining pereopods detached. — Original label: “Dicranodromia Mahyeuxii A. M. Edw., type, Edw. et Bouv. dét, 9 juillet, N° 72, 882 m, lat. N 25°39’, long. O 18°22’, Soudan, Sable, coraux, coquilles”.

REMARKS
This specimen, first identified as Dicranodromia Mahyeuxii A. Milne-Edwards, 1883 by A. Milne-Edwards & Bouvier (1900: 15, pl. 3, fig. 4, pl. 9, figs 1-11), was described as a new species by Guinot (1995: 236, 238). See above under D. mahieuxii A. Milne-Edwards, 1883.

Dicranodromia spinulata Guinot, 1995
(Fig. 6C)

Dicranodromia spinulata Guinot, 1995: 202 (in key), 225, figs 21a-c, 22A, B, 25D.

HOLOTYPE (by original designation). — MNHN-B22701, New Caledonia, Loyalty Basin, Norfolk Ridge, BIOCAL, Jean Charcot, stn DW33, 23°10’S, 167°10’E, 675-680 m, 29.VIII.1985, ♀ 11.0 × 7.5 mm.

Cryptodromia erioxylon McLay, 2001
(Fig. 7B)

Cryptodromia erioxylon McLay, 2001a: 88 (in key), 91, figs 3, 4C.

HOLOTYPE (by original designation). — MNHN-B26473, French Polynesia, Marquesas Islands, Hiva Oa Island, MUS- ORSTOM 9, Alis, stn CP1228, 9°44.60’S, 138°51.50’W , 107-108 m, 30.VIII.1997, ♂ 9.6 × 11.9 mm.

Cryptodromia longipes McLay, 1993
(Fig. 7D)

Cryptodromia longipes McLay, 1993: 199 (in key), 208, fig. 8a-g.

HOLOTYPE (by original designation). — MNHN-B22569, Coral Sea, Chesterfield Islands, CORAIL 2, Coriolis, stn
Cryptodromia marquesas McLay, 2001
(Fig. 8A)

Cryptodromia marquesas McLay, 2001a: 80 (in key), 89, figs 2, 4B.

Holotype (by original designation). — MNHN-B26469, French Polynesia, Marquesas Islands, Ua Pou Island, MUSORSTOM 9, *Alis*, stn CP1265, 9°20.40'S, 140°7.30'W, 90-92 m, 3.IX.1997, ♀, 6.9 × 7.8 mm.

Paratype. — MNHN-B26470, Marquesas Islands, Hiva Oa Island, MUSORSTOM 9, *Alis*, stn DW1203, 9°5.7'S, 139°2.20'W, 60-61 m, 28.VIII.1997, 1 ♂.

Cryptodromia pitiensis McLay, 2001
(Fig. 8B)

Cryptodromia pitiensis McLay, 2001b: 828 (in key), 829, figs 5, 6.

Holotype (by original designation). — MNHN-B27522 (cited as B27303 in McLay's paper), Mariana Islands, Guam, Piti Reef, S of Orote Point, 13°27'N, 144°47'E, 18-30 m, outer reef slope, 20.XII.1990, G. Nelson & H. T. Conley coll., ov. ♀, 14.2 × 17.8 mm.

Dromia bollorei Forest, 1974
(Fig. 8C)

Dromia bollorei Forest, 1974: 76 (in key), 91, figs 1d, 2, 3d, 5, 6b, 7c, d, pl. 2, figs 1, 2, pl. 3, fig. 4, pl. 6, fig. 1.

Holotype (by original designation). — MNHN-B21993, Ivory Coast, 5°01’N, 3°49.5’W, 100 m, trawl, 6.IV.1967, P. Le Loeuff coll., ov. ♀, 43.1 × 47.5 mm.

Current status. — *Cryptodromia fallax* (Latreille, 1812).

Remarks

Dromia fallax was attributed to Lamarck (1818) by H. Milne Edwards (1837: 176), A. Milne-Edwards (1862b: 10; see also 1862a) and by most authors, including McLay (1993: 206). The species was in fact briefly described by Latreille (1812: 276) in a short paper on the crabs from “Île-de-France” (= Mauritius) collected by M. J. Milbert. Latreille’s name could not be considered a *nomen nudum*. Lamarck (1818: 264) only wrote that the *Dromia fallax* of MNHN was “a small species inhabiting ‘Île de France’”. A full description of a specimen from the same location and probably based on the same material was given by H. Milne Edwards (1837: 176). The identity of the species is clear so its author should be Latreille, 1812.

Two lots were presumed to be the syntypes of *Dromia fallax* by D. Guinot in 1983 on request of C. L. McLay. Their original labels are respectively: MNHN-B9, ♂, “*Dromia fallax*, Île Bourbon, M. Maillard coll.”, with the additional label “McLay det. *Cryptodromia fallax*”; and MNHN-B6, probably ♂, 13.4 mm length, *Dromia fallax*, same data, dry and in good condition. Both lots bear “île Bourbon” (= Réunion), instead of “Île de France” mentioned by Latreille (1812), Lamarck (1818), and H. Milne Edwards (1837). These two samples cannot represent the syntypes, as stated by McLay (1993: 207) for the specimen MNHN-B6 and erroneously indicated on the labels of both lots. Nevertheless, because the type material is presumably lost and also to avoid possible confusion about the origin on the labels, the rehydrated male specimen MNHN-B9 is selected herein as the neotype of *Cryptodromia fallax* (Latreille, 1812).

Dromia foresti McLay, 1993
(Fig. 11D)

Dromia foresti McLay, 1993: 154, figs 5a-j, 16d.
CURRENT STATUS. — *Stimdromia foresti* (McLay, 1993).

HOLOTYPE (by original designation). — MNHN-B22553, New Caledonia, Bellona Reefs, MUSORSTOM 5, *Coriolis*, stn DW299, 22°47.70'S, 159°23.70'E, 360-390 m, 11.X.1986, ♂ 27.3 × 23.0 mm, Guinot det. *Stimdromia foresti*.

REMARKS

Dromia foresti McLay, 1993 is referred to *Stimdromia* McLay, 1993 in a paper on *Dromia* and allied genera in progress by one of us (DG).

Dromia gibbosa H. Milne Edwards, 1837

Dromia gibbosa H. Milne Edwards, 1837: 175.

CURRENT STATUS. — ? *Lauridromia indica* (Gray, 1831).

?**SYNTYPE.** — MNHN-B10, without indication of origin, ♀ approximately 20 mm width, previously dry but presently rehydrated, much damaged. — Original label: “*Dromia gibbosa* Latr., ‘jeune âge’”.

REMARKS

In a footnote H. Milne Edwards (1837: 175) referred the synonymy of *Dromia gibbosa* with *Dromia aegagrophila* (Fabricius, 1787) to Latreille but did not provide a date for the reference. According to McLay (1993: 145) the type material of *D. gibbosa* was believed to be no longer extant. But McLay (2001b: 823, 826) mentioned that the type specimen “has recently been re-discovered in the dry collection of MNHN (D. Guinot pers. comm.).” The female MNHN-B10 cannot be the much larger specimen quoted by H. Milne Edwards (1837: 176) as measuring “2 pouces” (about 54 mm), but it might be a syntype. McLay (1993: 145) considered the poorly described *D. gibbosa* as a probable synonym of *Lauridromia indica* (Gray, 1831) and again (McLay 2001b) stated that H. Milne Edwards’ description contained “enough details [...] to confidently say that *D. gibbosa* is almost certainly the same as *D. indica* Gray, 1831”, i.e. *Lauridromia indica* (Gray, 1831).

Dromia globosa Lamarck, 1818

Dromia globosa Lamarck, 1818: 264.

CURRENT STATUS. — *Lamarckdromia globosa* (Lamarck, 1818).

LECTOTYPE (designated by Guinot & Tavares 2003). — MNHN-B22034, South Africa, Cape of Good Hope, Guinot & Tavares det. *Lamarckdromia globosa*, ♂ 26.6 × 31.0 mm, abdomen detached. — Original label: “*Dromia hirsutissima*, Cap de B. Espérance”.

REMARKS

Lamarck (1818) stated that his *Dromia hirsutissima* came from Cape of Good Hope (“Cap de Bonne-Espérance”) and that it was deposited in MNHN. H. Milne Edwards (1837: 176 as *Dromia hirtissima* [sic]) seems to have examined the same material and similarly mentioned that it was housed in the MNHN. The only specimen of *Dromidia hirsutissima* (Lamarck, 1818) in the MNHN collection is a male (26.6 × 31.0 mm) labelled “Cap de Bonne-Espérance” (MNHN-B22034), and without any other detail on the label. This specimen, presently in alcohol (previously dry), is presumed to be the type specimen of *Dromia hirsutissima* Lamarck, 1818, endemic to South Africa, and was selected
as the lectotype of *Dromidia hirsutissima* by Guinot & Tavares (2003: 59).

Dromia lator H. Milne Edwards, 1837 (Fig. 8D)

CURRENT STATUS. — *Dromia erythropus* (George Edwards, 1831).

LECTOTYPE. — MNHN-B4015, West Indies, Martinique, M. Plée coll., ♂ 71 × 92 mm, dry and in good condition. — Original label: “*Dromia Lator* Edw., Martinique, M. Plée”.

REMARKS

The designation of this specimen as “probably the type” (Forest 1974: 80, footnote) constitutes a valid lectotype designation. A presumed syntype of *Dromia lator*, from the West Indies, a male labelled “Antilles” (with dissected mouthparts) deposited in the RMNH (RMNH D 42169), as a gift of H. Milne Edwards in 1843 (Fransen et al. 1997: 80), is a paralectotype. The synonymy with *Dromia erythropus* (George Edwards, 1831) has long been accepted (Rathbun 1937; Forest 1974).

Dromia marmorea Forest, 1974 (Fig. 9A)

Dromia marmorea Forest, 1974: 76 (in key), 79, figs 1c, 2, 3b, 4d-f, j, k, 5, pl. 1, figs 2, 4, pl. 3, fig. 2, pl. 4, fig. 7, pl. 5, figs 3, 4, pl. 8, figs 3, 4.

HOLOTYPE (by original designation). — MNHN-B21901, Cape Verde Islands, Santiago Island, Porto Praia, *Sylvana*, stn 137, 3.V.1913, Prince de Polignac coll., ♂ 25.0 × 27.5 mm, abdomen and 2 pereopods detached, Guinot det. *Sternodromia monodi*.

REMARKS

Forest (1974: 79) has designated two other specimens, a male and a female, collected by I. Marche-Marchad near Dakar as paratypes. These specimens are presently missing in the collection. Paratype MNHN-B21991 is also missing.

Dromia nodipes Guérin-Méneville, 1832

Dromia nodipes Guérin-Méneville, 1832: 11, pl. 14, fig. 1.

CURRENT STATUS. — *Fultodromia nodipes* (Guérin-Méneville, 1832).

LECTOTYPE (designated by Guinot & Tavares 2003). — MNHN-B15, unknown location, Guinot & Tavares det. *Fultodromia nodipes*, ♀ 22.5 × 23.0 mm, rehydrated, presently in alcohol, badly damaged (carapace broken in several pieces, and rest of the body crushed).

REMARKS

The female specimen of *Dromia nodipes* was regarded as the presumed type and designated as the lectotype by Guinot & Tavares (2003: 66). It is not accompanied by any original label indicating the country of origin. This agrees with the question mark in the caption of the figure by Guérin-Méneville (1832: 11) and in the text of H. Milne Edwards (1837: 177). The additional mention “Cap de Bonne-Espérance” in the MNHN hard-bound catalogue most probably results from a mistake of a subsequent transcription. It is thus
incorrect to assign the reference “Cap de Bonne-Espérance” for Port Esperance or Esperance Bay in South Australia, as suggested by McLay (1993: 162), and also used by Davie (2002: 164). The provenance of the lectotype remains unknown, but the collection site could be South Australia (see McLay 1993: 162; Poore 2004: 306, fig. 85a). Note that *Dromia nodipes* Lamarck, 1818 (p. 264) is a *nomen nudum*.

Dromia nodosa
A. Milne-Edwards & Bouvier, 1898
(Fig. 9B)

Dromia nodosa A. Milne-Edwards & Bouvier, 1898: 75.

LECTOTYPE. — MNHN-B7834, Cape Verde Islands, canal between São Vicente and Santo Antão, *Talisman*, stn 115, about 16°56’N, 75 m, 29.VII.1883, ♂ 18 × 21 mm, abdomen detached. — Original label: “*Dromia nodosa* Edw. et Bouv., types, “Le Talisman” 1883, 29 juillet, N° 107, 75 m, Îles du Cap Vert; canal de St. Vincent à St. Antoine. Sable, coquilles, 4742-86”.

PARALECTOTYPE. — MNHN-B29856, same data as lectotype, ♂ 10.0 × 11.0 mm. — Original label: same as lectotype.

REMARKS

Only three specimens exist of the five males collected by the *Talisman* in the Cape Verde Islands, all three labelled “types”. A. Milne-Edwards & Bouvier (1898; 1900: 18, 20, pl. 9, figs 12-14) designated the larger specimen as the “type”. Monod (1956: 65) quoted five male “types”. As the original description was based on more than one specimen, the terms “holotype” and “paratypes” were misused by Forest & Guinot (1966: 45) and Forest (1974: 94) (ICZN 1999: Art. 74.5), and their holotype designation constitutes a valid lectotype designation. The two paratypes (one of which, ♂ 7.3 × 8.1 mm, is deposited at BMNH) become paralectotypes.

? *Dromidiopsis dubia* Lewinsohn, 1984
(Fig. 10E)

CURRENT STATUS

— *Mclaydromia dubia* (Lewinsohn, 1984).

HOLOTYPE (by original designation).

Dromidiopsis edwardsi Rathbun, 1919
(Fig. 9C)

Dromidiopsis edwardsi Rathbun, 1919: 197.

PARALECTOTYPE. — MNHN-B1, without any data, ♂, dry, much damaged. — Original label: “*Dromia caput-mortuum* Latr.”.

REMARKS

The two dry lots labelled *Dromia caput-mortuum* by H. Milne Edwards (1837), without locality (MNHN-B1 and MNHN-B2), constitute the syntypes of *Dromidiopsis edwardsi* (see Rathbun 1919: 197; McLay 1993: 137). The type status was considered unknown (Davie 2002: 163). The female specimen MNHN-B2, with the mention “Exp. de l’Astrolabe”, was selected as lectotype by Guinot & Tavares (2003: 63); the remaining individual is the paralectotype.

? *Dromidiopsis plumosa* Lewinsohn, 1984
(Fig. 11B)

CURRENT STATUS

— *Stebbingdromia plumosa* (Lewinsohn, 1984).

HOLOTYPE (by original designation).
— MNHN-B8572, Seychelles Islands, REVES 2, *Coriolis*, stn 1, 5°24.8’S, 57°03.5’E, dredge, 55 m, 2.IX.1980, R. Cleva coll., ♂ 5.9 × 6.7 mm, Guinot & Tavares (2003: 91) det. *Stebbingdromia plumosa*.
Dromidiopsis richeri McLay, 2001
(Fig. 9E)

Dromidiopsis richeri McLay, 2001: 79, figs 1, 4A.

HOLOTYPE (by original designation). — MNHN-B26471, French Polynesia, Marquesas Islands, Eiao Island, MUSORSTOM 9, *Alis*, stn CP1160, 7°57.80'S, 140°2.00'W, 49-55 m, 23.VIII.1997, ♀ 15.4 × 15.0 mm, right cheliped palm and fixed finger damaged, right P4 and part of P5 missing.

Epigodromia rotunda McLay, 1993
(Fig. 10A)

Epigodromia rotunda McLay, 1993: 217 (in key), 219, figs 11a-h, 18f.

HOLOTYPE (by original designation). — MNHN-B22576, New Caledonia, MUSORSTOM 4, *Vauban*, stn DW207, 22°39.00'S, 167°07.40'E, 220-235 m, 28.IX.1985, ♀ 4.8 × 4.2 mm.

Epigodromia rugosa McLay, 1993
(Fig. 10C)

Epigodromia rugosa McLay, 1993: 217 (in key), 222, fig. 12a-h.

HOLOTYPE (by original designation). — MNHN-B22578, New Caledonia, LAGON, stn 723, 21°21.6'S, 165°09.5'E, 45 m, 12.IX.1986, B. Richer de Forges coll., ♀ 11.2 × 9.8 mm.

PARATYPE. — MNHN-B22577, New Caledonia, LAGON, stn 723, 21°21.6'S, 165°09.5'E, 45 m, 12.IX.1986, B. Richer de Forges coll., ♂.

Hemisphaerodromia abellana Barnard, 1954
(Fig. 10B)

CURRENT STATUS. — *Hemisphaerodromia monodus* (Stebbing, 1918).

SYNTYPES. — MNHN-B7849, Madagascar, Nosy Maron- taly, 25.III.1952, P. Fourmanoir coll., Guinot & Tavares (2003: 67) det. *Hemisphaerodromia monodus*, 1 ♀ 9.2 × 10.2 mm, 1 ov. ♀ 8.5 × 9.6 mm, some legs missing or detached; female with abdomen detached.

Remarks

The lectotype of *Cryptodromia monodus* Stebbing, 1918 is deposited in the BMNH (BM 1925: 12: 1: 227).

Mclaydromia colini Guinot & Tavares, 2003
(Fig. 10D)

Mclaydromia colini Guinot & Tavares, 2003: 80, figs 12, 13.

HOLOTYPE (by original designation). — MNHN-B22546, New Caledonia, LAGON, stn 619, 22°3.2'S, 166°45.2'E, 27-42 m, 6.VIII.1986, ♂ 16.2 × 13.2 mm.

Platydromia depressa Brocchi, 1877
(Fig. 11A)

Platydromia depressa Brocchi, 1877: 53-54.

CURRENT STATUS. — *Platydromia spongiosa* (Stimpson, 1858).

PARALECTOTYPES. — MNHN-B8379, same data as lectotype, 5 specimens.

Remarks

Several specimens of *Platydromia depressa* Brocchi, 1877, from St. Paul Island (first registered as MNHN-B8739), may be considered syntypes. A male 9.0 × 10.0 mm was selected as lectotype by Guinot & Tavares (2003: 86) and registered MNHN-B27934. The remaining specimens are paralectotypes. Other specimens from the same expedition (see Vélain
1878) are labelled “Saint-Paul Island, Vélain coll.,
178-1875” (MNHN-B12724).

Takedromia longispina McLay, 1993
(Fig. 11E)

Takedromia longispina McLay, 1993: 211 (in key), 214,
figs 10a-j, 19c, d.

Holotype (by original designation). — MNHN-B22572,
New Caledonia, MUSORSTOM 4, _Vauban_, stn DW183,
19°01.80’S, 163°25.80’E, 280 m, 18.IX.1985, ♂ 11.2 ×
13.2 mm.

Paratype. — MNHN-B22573, Coral Sea, Chesterfield
Islands, CHALCAL 1, _Coriolis_, stn DC31, 19°33.30’S,
158°30.30’E, 230 m, 19.VII.1984, ♀.

2. Subfamily _HYPOCONCHINAE_
Guinot & Tavares, 2003

Hypoconcha californiensis Bouvier, 1898
(Fig. 12A)

Hypoconcha californiensis Bouvier, 1898: 375.

Lectotype (by present designation). — MNHN-B22066,
Gulf of California, San José Island, 1898, Léon Diguet
coll., ♂ 20.3 × 19.5 mm, abdomen and several legs
detached. — Original label: “Hypoconcha californiensis
E. L. Bouv. Type: Bull. du Mus. déc. 1898, Golfe de
Californie. Île de San José. L. Diguet 57-98”.

Paralectotype. — MNHN-B29883, same data as
lectotype, 1 ♀ 16.5 × 17.5 mm.

REMARKS. Bouvier (1898: 376) mentioned two females (one
12.5 × 13.5 mm, the other badly damaged), while
the single MNHN original lot indicated “Type”
consists of the male and the female mentioned
above. The male MNHN-B22066 is designated
herein as lectotype; the female MNHN-B29883
is a paralectotype.

Hypoconcha dugueti Bouvier, 1898
(Fig. 12B)

Hypoconcha dugueti Bouvier, 1898: 376.

CURRENT STATUS. — _Hypoconcha panamensis_ Smith in
Verrill, 1869.

Holotype (by monotypy). — MNHN-B22070, Mexico,
Baja California, La Paz Bay, 1898, Léon Diguet coll., ♀
33 mm width, abdomen and a few legs detached. — Original
label: “Hypoconcha dugueti E. L. Bouv. Type: Bull. du
Mus. déc. 1898, Californie, Baie de La Paz, L. Diguet
1898”.

3. Subfamily _SPHAERODROMIINAE_
Guinot & Tavares, 2003

Eodromia denticulata McLay, 1993
(Fig. 13A)

Eodromia denticulata McLay, 1993: 132, figs 3a-j, 15b.

Holotype (by original designation). — MNHN-B22544,
New Caledonia, Norfolk Ridge, SMIB 5, _Alis_, stn DW98,
23°01.70’S, 168°16.10’E, 335 m, 14.IX.1989, B. Richer
de Forges coll., ov. ♂ 5.7 × 5.8 mm.

Paratype. — MNHN-B22545, New Caledonia, Loyalty
Islands, MUSORSTOM 6, _Alis_, stn DW485, 21°23.48’S,
167°59.53’E, 350 m, 23.II.1989, B. Richer de Forges
coll., ♂, abdomen detached.

Sphaerodromia brizops McLay & Crosnier, 1991
(Fig. 13B)

Sphaerodromia brizops McLay & Crosnier, 1991: 182,
figs 1a-c, 2a-g, 3a-d, pl. 1a, b.

Holotype (by original designation). — MNHN-B24560,
Seychelles Islands, CEPROS, _Alis_, transect 13, 4°59.8’S,
56°48.8’E, trap 1-5, 200-300 m, 1.XI.1987, A. Intès
coll., ♂ 36.4 × 36.4 mm.

Sphaerodromia ducoussoi McLay, 1991
(Fig. 13C)

Sphaerodromia ducoussoi McLay, 1991: 459, figs 1a-d,
2a-h, 3a-d, pl. 1A.

Holotype (by original designation). — MNHN-B22172,
French Polynesia, Tuamotu Archipelago, Tuanake, stn
253, 16°37.3’S, 144°13.3’W, 144°13.3’W, 450 m, trap.
5.VI.1990, J. Poupin (SMCB) coll., ♂ 43.2 × 43 mm, carapace
and abdomen detached.
PARATYPE. — MNHN-B22173, French Polynesia, Tuamotu, Mururoa, trap, 400 m, 1984, SMCB coll., 1 ♀, abdomen and several appendages detached.

Sphaerodromia lamellata Crosnier, 1994
(Fig. 13D)

Sphaerodromia lamellata Crosnier, 1994: 341, figs 1-3, pl. 1.

HOLOTYPE (by original designation). — MNHN-B24724, New Caledonia, BERYX 11, *Alis*, stn CP51, 23°44.5’S, 168°16.7’E, 390-400 m, 21.X.1992, B. Richer de Forges coll., ♂ 47.8 × 42.6 mm.

Family DYNOMENIDAE Ortmann, 1892

Dynomene filholi Bouvier, 1894
(Fig. 14A)

LECTOTYPE (by present designation). — MNHN-B22080bis, Cape Verde Islands, Branco Islet, 60 m, σ 12.0 × 14.6 mm, carapace, abdomen, right P1 and P4 detached, right P5 incomplete, left P5 missing.

Remarks

Different lots are labelled as “types”: MNHN-B22080, 1 σ, 2 ♀♀, original label: “Le ‘Talisman’ 1883, Dynomene Filholi E.-L. Bouvier, type figuré, juillet, 60 mètres, Ilot Branco, 4742-86”; MNHN-B22078, 1 ♀, original label: “Le ‘Talisman’ 1883, 4742-86, Dynomene Filholi E.-L. Bouvier, type des couleurs, 23 juillet, 275-150 m, Îles du Cap Vert, env. de la Praya, banc de Corail rouge, N° 103”; MNHN-B22081, 3 σ σ, 4 ♀♀, 1 ov. ♀, 1 sp. (♀♂) (6 σ σ, 1 ♀, 1 ov. ♀ in McLay 1999: 488), original label: “le ‘Travailleur’ 1882, Dynomene Filholi E.-L. Bouvier, Type, 29 juillet 1882, 13°27’N, 144°47’E, 1-3.5 m, among dead coral, III.1997, H. T. Conley coll., σ 9.7 × 11.0 mm, left P2 detached.

The specimen dissected for the description of the gills by Bouvier (1894) was most probably lost. A neotype was selected by McLay (1999: 488; 489), who did not consider the specimens studied by A. Milne-Edwards & Bouvier (1900) as syntypes. Bouvier (1896) indicated that he did a complete study based on the specimens collected by the *Talisman* from Branco Island and Cape Verde Islands, which are believed herein to be syntypes. A. Milne-Edwards & Bouvier (1900) based their complete description on this same material. The largest male measuring 14.6 × 12.0 mm (from the lot MNHN-B22080) was the individual used for description and figured on plate 8 by A. Milne-Edwards & Bouvier (1900). The neotype of McLay is not valid (ICZN 1999: Art. 75.1, existence of syntypes), therefore the specimen presently registered MNHN-B22080bis is designated as the lectotype.

The other syntypes MNHN-B22078, MNHN-B22080 and MNHN-B22081 become paralectotypes.

Dynomene guamensis McLay, 2001
(Fig. 14B)

HOLOTYPE (by original designation). — MNHN-B26476, Mariana Islands, Guam, Piti Lagoon, 13°27’N, 144°47’E, 1-3.5 m, among dead coral, III.1997, H. T. Conley coll., σ 9.7 × 11.0 mm, left P2 detached.

Dynomene hispida Guérin-Méneville, 1832
(Fig. 14C)

LECTOTYPE. — MNHN-B24, Mauritius, designated as “type” on a label by R. Serène 27.III.1974, ♀ 11.5 × 14.0 mm, dry, still stuck on a piece of elder. — Original label: “Dynomene hispida Latr., Île de France”.

Remarks

According to Peyrot-Clausade & Serène (1976: 1342) (label in the vial 27.III.1974), this specimen
(in fact a female, and not a male) probably corresponds to the “Dynomène hispide” (vernacular name) figured by Desmarest (1825: pl. 18, fig. 2; 1823: 133 footnote, 432, pl. 18, fig. 2), thereafter by Guérin-Méneville (1832: 11, pl. 14, fig. 2) who gave a latinized name to this crab from “Île de France” (= Mauritius) figured on a plate. This specimen was designated as the “type” by Peyrot-Clausade & Serène (1976). McLay (1999: 475) erroneously concluded that this specimen “was probably considered the holotype by Desmarest” and designated it as holotype (also see Davie 2002: 168). At the same time McLay (1999: 474) quoted another specimen of *D. hispida* as “originally part of the collection of Guérin-Méneville” deposited at Philadelphia (ANSP-CA 3315), with many other decapods from the Guérin-Méneville’s collection (see Spamer & Bogan 1992, 1993a, b). Due to the subsequent misuse of the term “holotype” (ICZN 1999: Art 74.6), this specimen is regarded as a lectotype.

Dynomene kroppi McLay, 2001
(Fig. 14D)

Dynomene kroppi McLay, 2001a: 811, figs 1, 3A.

HOLOTYPE (by original designation). — MNHN-B26474, Mariana Islands, Guam, Piti Reef, 1 m, among rocks, VIII.1993, ♂ 9.7 × 11.9 mm, right P3 and left P4 missing.

PARATYPE. — MNHN-B26475, same data as holotype, 1 ♀.

Dynomene latreillii Eydoux & Souleyet, 1842
(Fig. 15A)

Dynomene latreillii Eydoux & Souleyet, 1842: 239, pl. 3, figs 3-5 (*Dynomena latreillii*).

CURRENT STATUS. — *Dynome hispida* Guérin-Méneville, 1832.

HOLOTYPE (by monotypy). — MNHN-B23 (cited as B235 in McLay 1999), Hawaii, 1836, specimen stuck on a piece of elder, sex undeterminable, abdomen missing, 5.5 × 6.5 mm (6.0 mm long indicated by Eydoux & Souleyet [1842: 240], 6.0 × 7.9 mm indicated in McLay [1999: 475]), McLay 1996 det. *Dynome hispida*, dry, left P1 and pair of P5 missing. — Original label: “Dynomene hispida” (Latr.), *D. latreillii* (Eydoux et Souleyet), Voyage de la Bonite, Îles Sandwich”.

Remarks
The text of Eydoux & Souleyet (1842: 240) unambiguously reveals that the taxon had been based on a single individual, consequently the term “holotype” was correctly used by McLay (1999: 475), followed by Davie (2002: 168).

Dynomene praedator A. Milne-Edwards, 1879
(Fig. 15B)

LECTOTYPE (by present designation). — MNHN-B3991, selected among six specimens labelled “Dynomene praedator A. M. Edw., TYPES ! Ann. sc. nat. (6) T. VII, pl. XII, fig. 20-26, 1878, Nouvelle Calédonie (1875), Coll. [Collection] A. Milne Edwards, 1903”, undeterminable sex, 10.0. × 12.5 mm, dry, still stuck on the original cardboard.

PARALECTOTYPES. — MNHN-B30160, same data as lectotype, 5 specimens, dry, still stuck on their original cardboard, so that the sex cannot be recognized, except for one female of the lot turned ventrally.

Remarks
A. Milne-Edwards (1879: 9) did not designate a type specimen when describing the species based on male (10.0. × 13.0 mm) and female (8.0 × 10.0 mm) from New Caledonia and Samoa. McLay (1999: 482, 486) argued that, as A. Milne-Edwards (1879: pl. 14, figs 20-26) figured the male and its measurements were presented first, then the male should be regarded as the holotype. He (McLay 1999: 486) considered that this male collected by Balansa from the intertidal, New Caledonia, 1873 “probably no longer exists” because the figures in plate 14 (A. Milne-Edwards 1879) showed the male (10.0. × 13.0 mm) with a dismembered thorax (McLay 1999: 486). However, McLay (1999: 486) suggested “there is a paratype female (10.2 × 8.1 mm) from the same collection, and held at the Muséum national d’Histoire naturelle, Paris, registration number MNHN-B7029” (in alcohol). According to McLay (1999: 486), his own
description of *D. praedator* was based on this female MNHN-B7029 which “has the label *Dynomene praedator* A. Milne Edwards Nouvelle Calédonie. Coll. A. Milne Edwards, 1903”. McLay continued: “These dimensions are very close to those given by A. Milne Edwards (1879) for the female specimen that he mentions so it is likely that this is the female paratype” (see also Davie 2002: 169).

During the preparation of this catalogue, a box with six specimens, still glued on their original cardboard and labelled “*Dynomene praedator* A. M. Edw., TYPES” (see above), was discovered in the MNHN collection (MNHN-B3991). C. L. McLay did not see these specimens during his stay at the MNHN. The largest specimen is probably the individual with dimensions similar to the male figured by A. Milne-Edwards (1879: pl. 14, figs 20-26). This specimen, which corresponds to the holotype mentioned by McLay (1999), is here designated as the lectotype for *Dynomene praedator* and keeps the ancient registration number MNHN-B3991.

The female forming lot MNHN-B7029 (in alcohol), 8.1 × 10.2 mm, from New Caledonia but not labelled as a type and designated as paratype by McLay (1999: 482, 486), is not a paralectotype.

Dynomene ursula Stimpson, 1860
(Fig. 15C)

Dynamene ursula Stimpson, 1860: 239.

Current Status. — *Hirsutodynomene ursula* (Stimpson, 1860).

Lectotype. — MNHN-B3992, Mexico, Baja California, Cabo San Lucas, ♀ 11.0 × 14.5 mm, dry. — Label: “*Dynamene ursula* Stimpson, Saint Lucas, Coll. [Collection] A. M. Edwards 1903, probablement TYPE”.

Remarks
According to Stimpson (1860: 176) the original material collected in North America was held by the Smithsonian Institution. His *Dynomene ursula* was represented by several male and female specimens, collected by M. J. Xantus at Cape St. Lucas. Rathbun (1937: 54) stated that the type of *D. ursula* was not extant. McLay (1999: 511) wrote that the holotype was a male measuring 12.7 × 15.2 mm, dimensions that are actually those of the female mentioned by Stimpson (0.5 × 0.6 inches). McLay added that a syntype was held by the Museum of Comparative Zoology, Harvard (MCZ 1378). The holotype designation by McLay constitutes a misuse of the Code (ICZN 1999: Art. 74.6). The female MNHN-B3992 is here designated as the lectotype of *Dynomene ursula*, and the MCZ 1378 specimen becomes a paralectotype.

Metadynomene crosnieri McLay, 1999
(Fig. 15D)

Holotype (by original designation). — MNHN-B22510, Indian Ocean, Glorieuses Islands, BENTHEDI, 11°32.00’S, 47°16.40’E, 330-340 m, 7.VI.1977, ♂ 22.7 × 23.2 mm, right P1 and left P2 missing.

Paradynomene demon McLay & Ng, 2004
(Fig. 16A)

Paradynomene demon McLay & Ng, 2004: 12, figs 7A, 8, 14C.

Holotype (by original designation). — MNHN-B26602, New Caledonia, HALICAL 1, *Alis*, stn DW02, 18°54’S, 163°24’E, 352-397 m, 23.XI.1994, ♀ 24.0 × 23.2 mm, several legs detached.

Paradynomene diablo McLay & Ng, 2004
(Fig. 16B)

Paradynomene diablo McLay & Ng, 2004: 14, figs 7B, 9, 14D.

Holotype (by original designation). — MNHN-B26610 (erroneously MNHN-B26607 in McLay & Ng), Indonesia, KARUBAR, *Baruna Jaya 1*, stn DW49, Tanimbar I., 8°00’S, 132°59’E, 206-210 m, 29.X.1991 (erroneously New Caledonia, Norfolk Ridge, BATHUS 3, *Alis*, stn...
DW830, 23°20'S, 168°01'E, 361-365 m, 29.XI.1993, in McLay & Ng), ♂ 12.6 × 11.4 mm, P1 detached.

REMARKS
The specimen MNHN-B26607 was previously identified as P. tuberculata by McLay (1999). Considering the list of material identified as P. tuberculata (McLay 1999: 543), it appears that the holotype of Paradynomene diablo, a male 12.6 × 11.4 mm, was not collected in New Caledonia but corresponds to the male specimen, 12.5 × 11.2 mm, collected in Indonesia (KARUBAR, Baruna Jaya 1, stn DW49, Tanimbar I., 8°00'S, 132°59'E, 206-210 m, 29.X.1991, MNHN-B26610). A label in the tube indicates that this specimen was the one sent on loan to C. L. McLay. However, a sample from BATHUS 3, stn DW830 (MNHN-B26607), with a male 15.5 × 15 mm (cited as 15.8 × 14.7 mm in McLay 1999: 543, as P. tuberculata), contains an erroneously type label "Paradynomene diablo Holotype". This specimen was not re-examined by McLay & Ng (2004) in their revision of Paradynomene, and its identification needs to be clarified. In conclusion, the holotype of P. diablo McLay & Ng, 2004 is a male 12.6 × 11.4 mm from Tanimbar I., Indonesia (see above), registered MNHN-B26610.

Paradynomene rotunda McLay & Ng, 2004
(Fig. 16C)
Paradynomene rotunda McLay & Ng, 2004: 19, figs 12, 13, 14F.

HOLOTYPE (by original designation). — MNHN-B26604, Coral Sea, Chesterfield Islands, CORAIL 2, Coriolis, stn DW159, 19°46.04'S, 158°19.09'E, 52 m, 1.IX.1988, ♂ 18.0 × 19.0 mm.

Subsection HOMOLIDEA De Haan, 1839
Superfamily HOMOLOIDEA De Haan, 1839
Family HOMOLIDAE De Haan, 1839

Homola coriolisi
Guinot & Richer de Forges, 1995
(Fig. 17B)

Homola coriolisi Guinot & Richer de Forges, 1995: 322 (in key), 342, figs 9f, 11e, f, 12D, 13d.

HOLOTYPE (by original designation). — MNHN-B16691, New Caledonia, MUSORSTOM 4, Vauban, stn CP193, 18°56.3'S, 163°23.2'E, 415 m, 19.IX.1985, ♂ 21.4 × 19.0 mm.

PARATYPES. — MNHN-B16693, New Caledonia, MUSORSTOM 4, Vauban, stn CP194, 18°52.8'S, 163°21.7'E, 545 m, 19.IX.1985, 1 ♂. — MNHN-B19899, New Caledonia, SMIB 2, Vauban, stn DW9, 22°54'S, 167°15'E, 475-500 m, 19.IX.1986, 1 ♀. — MNHN-B19891, SMIB 2, stn DC26, 22°59'S, 167°23'E, 500-553 m, 21.IX.1986, 1 ♂. — MNHN-B19890, New Caledonia, CHALCAL 2, Coriolis, stn CC1, 24°54.96'S, 168°21.91'E, 500 m, 28.X.1986, 2 ♂♂, 5 ♀♀, one with carapace detached, 1 ov. ♀.

Homola eldredgei
Guinot & Richer de Forges, 1995
(Fig. 17A)

Homola eldredgei Guinot & Richer de Forges, 1995: 322 (in key), 340, figs 9d, 13i, 14e, f.

HOLOTYPE (by original designation). — MNHN-B20285, Seychelles Islands, CEPROS, Alis, radiale 4, 4°46.5’S, 56°38.4'E, trap, 420-430 m, 23.X.1987, A. Intès coll., ♀ 30.0 × 26.5 mm.

PARATYPE. — MNHN-B24322, same data as holotype, ov. ♀, anterior region of carapace broken.

Homola ranunculus
Guinot & Richer de Forges, 1995
(Fig. 17C)

Homola ranunculus Guinot & Richer de Forges, 1995: 322 (in key), 344, figs 13g, 15A-C, 16a, b.

HOLOTYPE (by original designation). — MNHN-B16723, New Caledonia, BIOCAL, Jean Charcot, stn CP67, 24°55.44’S, 168°21.55'E, 500-510 m, 3.IX.1985, ♂ 32.4 × 26.8 mm.

29 ♂♂ (1 juv.), 10 ♀♀ (3 juv.), 16 ov. ♀♀ (30 ♂♂, 2 ♀♀, 19 ov. ♀♀ in Guinot & Richer de Forges 1995).

Homola vigil A. Milne-Edwards, 1880

Homola vigil A. Milne-Edwards, 1880: 33.

LECTOTYPE. — MNHN-B6964, West Indies, Martinique, Blake, stn 193, 14°43.48'N, 61°11.25'W, 310 m, 5.II.1879, ♂ 21.0 × 18.0 mm, carapace, abdomen, and many appendages detached; rostrum slightly blunt. — Original label: “Martinique, Blake (Agassiz) 1-79, Homola vigil A. M. Edw. 1880 (Typique), Nº 193, 169 brasses”.

REMARKS
The type series consisted of three specimens. The specimen from Martinique (stn 193), labelled as “typique” and figured by A. Milne-Edwards & Bouvier (1902), was explicitly designated as the holotype by Rathbun (1937: 66, as *Thelxiope vigil*), and she added (Rathbun 1937: table 18): “Whereabouts unknown” and “not examined”, which was followed by Guinot & Richer de Forges (1995). This constitutes a misuse of the Code because A. Milne-Edwards (1880) referred to several specimens. Thus the Martinique specimen is designated here as the lectotype (ICZN 1999: Art. 74.6). The two other specimens, from Cuba and Guadeloupe, deposited at MCZ become paralectotypes. See Guinot & Richer de Forges (1995: figs 9i, 13b).

Homolochunia gadaletae

Guinot & Richer de Forges, 1995
(Fig. 18A)

Homolochunia gadaletae Guinot & Richer de Forges, 1995: 434, figs 50e, f, 51d-f.

PARATYPE. — MNHN-B24805, Japan, Tosa Bay, 1961, K. Sakai leg., ov. ♀, carapace detached, some appendages detached or missing.

REMARKS
Holotype (by original designation), ♂ 35.8 × 23.5 mm (SMF 22288).

Homologenus boucheti

Guinot & Richer de Forges, 1995
(Fig. 18B)

Homologenus boucheti Guinot & Richer de Forges, 1995: 430 (in key), 472, fig. 66b, c, h.

HOLOTYPE (by original designation). — MNHN-B22611, North Atlantic Ocean, Ibero-Moroccan Gulf, BALGIM, *Cryos*, stn CP98, 34°29'N, 07°42'W, 1721-1773 m, 9.VI.1984, ov. ♀ 16.0 × 10.4 mm (14 mm with latero-anterior spines included), 1 P2 and 1 P3 missing.

PARATYPES. — MNHN-B22609, BALGIM, stn CP63, 35°31'N, 07°42'W, 1488-1535 m, 4.VI.1984, 2 ♂♂, 1 ov. ♀. — MNHN-B22605, same cruise, stn CP68, 35°12'N, 07°53'W, 1998-2077 m, 5.VI.1984, 2 ♀♀ (1 ov.). — MNHN-B22608, same cruise, stn DW88, 34°20'N, 07°19'W, 738-742 m, 7.VI.1984, 3 ♂♂. — MNHN-B22606, same data as holotype, 3 ♂♂, 2 ov. ♀♀. — MNHN-B22602, same cruise, stn CP99, 34°28'N, 07°43'W, 1848-1892 m, 9.VI.1984, 5 ♂♂, one with carapace badly damaged 1 ♀, 2 ov. ♀♀ (4 ♂♂, 2 ♀♀, 2 ov. ♀♀ in Guinot & Richer de Forges 1995).

REMARKS
The Blake specimen described as *Homolopsis rostratus* by A. Milne-Edwards (1880: 34) (at present *Homologenus rostratus*; holotype ♂ in MCZ) does not belong to the same species as the specimen figured by A. Milne-Edwards (1883: pl. 6, fig. 1, 1a) under the same name. This latter specimen collected from Morocco corresponds to *H. boucheti*. The eastern Atlantic specimens collected by the Princess-Alice and both the *Travailleur* and the *Talisman* (A. Milne-Edwards & Bouvier 1899, 1900) have to be assigned to *Homologenus boucheti*, while *H. rostratus* is restricted to the western Atlantic (Guinot & Richer de Forges 1995; Forest & Holthuis 1997).

Homologenus broussei

Guinot & Richer de Forges, 1981
(Fig. 18C)

Homologenus broussei Guinot & Richer de Forges, 1981: 551, figs 1C, 3E, 4J, 7A, pl. 5, figs 2, 2a-c.

HOLOTYPE (by original designation). — MNHN-B7021, French Polynesia, Tahiti, *Coquille*, stn D01, dredge, 16°27.5'S, 146°32.2'W, 1025 m, 17.XII.1970, ♀ 18.3 × 15.0 mm, pereopods detached or missing.
Homologenus levii
Guinot & Richer de Forges, 1995
(Fig. 19A)

Homologenus levii Guinot & Richer de Forges, 1995:
470 (in key), 479, fig. 67f, j.

HOLOTYPE (by original designation). — MNHN-B16682, New Caledonia, BIOCAL, Jean Charcot, stn CP62, 24°19’S, 167°49’E, 1395-1410 m, 2.IX.1985, ♀ 13.0 × 8.5 mm.

PARATYPES. — MNHN-B16683, same data as holotype, 1 ♂. — MNHN-B16684, same cruise, stn CP69, 23°52’S, 167°58’E, 1220-1225 m, 3.IX.1985, 1 ♀.

Remarks
- Homologenus levii: the type locality is New Caledonia, and the type specimen was collected during the Jean Charcot cruise CP62 in 1985. There were multiple paratypes collected from different locations.

Homologenus wallis
Guinot & Richer de Forges, 1995
(Fig. 19B)

Homologenus wallis Guinot & Richer de Forges, 1995:
470 (in key), 482, fig. 67c, d, h.

HOLOTYPE (by original designation). — MNHN-B24699, South Pacific Ocean, Wallis and Futuna Islands, MUSORSTOM 7, Alis, stn CP567, 11°47’S, 178°27’W, 1010-1020 m, 20.V.1992, ♀ 17.6 × 11.4 mm.

PARATYPES. — MNHN-B24695, same cruise, stn CP620, 12°34.4’S, 178°11’W, 1280 m, 28.V.1992, 1 ov. ♀. — MNHN-B24696, same cruise, stn CP623, 12°34.2’S, 178°15.1’W, 1300 m, 28.V.1992, 2 ♂♂, 1 ♀.

Remarks
- Homologenus wallis: the type locality is the South Pacific Ocean near Wallis and Futuna Islands, and the type specimen was collected during the Alis cruise CP567 in 1992. There were multiple paratypes collected from different cruises.

Homolomannia occlusa
Guinot & Richer de Forges, 1981
(Fig. 19C)

Homolomannia occlusa Guinot & Richer de Forges, 1981:
554, figs 3F, 4I, pl. 6, figs 2, 2a-c.

HOLOTYPE (by original designation). — MNHN-B6993, Madagascar, Majunga, FAO 60, stn 73/66, 15°21’S, 46°08’E, trawl, 180-200 m, 23.VI.1973, ov. ♀ 24.2 × 23.0 mm, some pereopods detached or missing.

PARATYPE. — MNHN-B6992, Madagascar, Vauban, stn 44, 15°25.7’S, 46°01’E, trawl, 200-210 m, 7.XI.1972, A. Crosnier coll., 1 ♀ juv.

Remarks
- Homolomannia occlusa: the type locality is Madagascar, and the type specimen was collected during the FAO 60 cruise in 1973. The paratype is a juvenile.

Hypsophrys futuna
Guinot & Richer de Forges, 1995
(Fig. 20A)

Hypsophrys futuna Guinot & Richer de Forges, 1995:
443 (in key), 456, figs 61f, 66a, g.

CURRENT STATUS. — Lamoha longirostris (Chen, 1986).

HOLOTYPE (by original designation). — MNHN-B24697, South Pacific Ocean, Wallis and Futuna Islands, MUSORSTOM 7, Alis, stn CP621, 12°35’S, 178°11.5’W, 1300 m, 28.V.1992, ♂ 18 × 15 mm.

PARATYPES. — MNHN-B24695, same cruise, stn CP620, 12°34.4’S, 178°11’W, 1280 m, 28.V.1992, 1 ov. ♀. — MNHN-B24696, same cruise, stn CP623, 12°34.2’S, 178°15.1’W, 1300 m, 28.V.1992, 2 ♂♂, 1 ♀.

Remarks
- Hypsophrys futuna: the type locality is the South Pacific Ocean near Wallis and Futuna Islands, and the type specimen was collected during the Alis cruise CP621 in 1992. There were multiple paratypes collected from different cruises.

Hypsophrys inflata
Guinot & Richer de Forges, 1981
(Fig. 20C)

Hypsophrys inflata Guinot & Richer de Forges, 1981:
547, figs 3C, 4C, pl. 4, fig. 2, 2a.

CURRENT STATUS. — Lamoha inflata (Guinot & Richer de Forges, 1981).

HOLOTYPE (by original designation). — MNHN-B7024, Samoa, Apolima Strait, Vauban, trap, 400 m, 17.XI.1977, A. Intès coll., ♀ 34.0 × 29.0 mm.

PARATYPE. — MNHN-B29009, same data as holotype, 1 ♀.

Remarks
- Hypsophrys inflata: the type locality is Samoa, and the type specimen was collected during the Vauban trap in 1977. The paratype is a female.

REMARKS

The paratype, which was registered under the same number as holotype, MNHN-B7024, now has the number MNHN-B29009.
Hypsophrys personata
Guinot & Richer de Forges, 1981
(Fig. 20D)

Hypsophrys personata Guinot & Richer de Forges, 1981: 543, figs 4A, 5B, B1, 7D, pl. 4, figs 3, 3a, 3b, 4, pl. 7, fig. 3, 3a.

CURRENT STATUS. — Lamoha personata (Guinot & Richer de Forges, 1981).

HOLOTYPE (by original designation). — MNHN-B7022, Vanuatu (New Hebrides), Torres Islands (Loh), trap, 900 m, 14.X.1977, A. Intès coll., ♂ 38.4 × 39.0 mm.

PARATYPE. — MNHN-B29008, same data as holotype, 1 ♀.

REMARKS
The paratype, which was first registered under the same number as the holotype (MNHN-B7022), now has the number MNHN-B29008.

Ihlopsis tirardi
Guinot & Richer de Forges, 1995
(Fig. 20B)

Ihlopsis tirardi Guinot & Richer de Forges, 1995: 425, figs 46A, B, 47c-f, 48A, B.

HOLOTYPE (by original designation). — MNHN-B20283, New Caledonia, Vauban, île des Pins, 22°49'S, 167°12'E, dredge, 400 m, 10.IV.1978, A. Intès coll., ♂ 20.0 × 17.0 mm.

Latreillopsis antennata
Guinot & Richer de Forges, 1995
(Fig. 21A)

Latreillopsis antennata Guinot & Richer de Forges, 1995: 411, figs 37b-d, 41D, 43E.

HOLOTYPE (by original designation). — MNHN-B19904, Coral Sea, Chesterfield Islands, MUSORSTOM 5, Coriolis, stn DW299, 22°47.7’S, 159°23.7’E, 360-390 m, 11.X.1986, ♂ 12.6 × 8.4 mm.

PARATYPES. — MNHN-B20125, New Caledonia, SMIB 3, Vauban, stn DW18, 23°41.5’S, 167°59.4’E, 338 m, 23.V.1987, 1 ♂, uncomplete, with only parts of a few pereopods remaining, detached. — MNHN-B22327, New Caledonia, Norfolk Ridge, SMIB 5, Alis, stn DW94, 22°19.6’S, 168°42.8’E, 275 m, 13.X.1989, 1 ♂, uncomplete, with only a few legs remaining, completely or partly preserved, detached.

Latreillopsis daviei
Guinot & Richer de Forges, 1995
(Fig. 21B)

Latreillopsis daviei Guinot & Richer de Forges, 1995: 407, figs 34A, B, 40a-d.

HOLOTYPE (by original designation). — MNHN-B20606 (ex QM), Australia, Queensland, Soela, cruise 6, stn 83, 18°39’S, 148°03’E, 248 m, 8.XII.1985, P. Davie coll., ♂ 17.0 × 11.8 mm, 2 ambulatory legs missing.

PARATYPES. — MNHN-B22343 (ex QM), same data as holotype, 3 ♂♂, 1 ov. ♀, many legs detached, one male with carapace damaged postero-laterally.

Latreillopsis gracilipes
Guinot & Richer de Forges, 1981
(Fig. 21C)

Latreillopsis gracilipes Guinot & Richer de Forges, 1981: 557, figs 3G, 4H, 6C, C1, pl. 7, figs 1, 1a.

HOLOTYPE (by original designation). — MNHN-B7032, New Caledonia, Vauban, stn CB138, 22°17.5’S, 167°13’E, dredge, 400 m, 23.V.1978, A. Intès coll., ♂ 11.5 × 8.0 mm.

PARATYPE. — MNHN-B7033, New Caledonia, Vauban, stn Dr8, 22°19.5’S, 167°10’E, dredge, 220-230 m, 23.V.1978, A. Intès coll., ov. ♀, a few legs missing.
Remarks
See Guinot & Richer de Forges (1995: fig. 38a-d).

Moloha alisae Guinot & Richer de Forges, 1995
(Fig. 21D)

Moloha alisae Guinot & Richer de Forges, 1995: 389, figs 29e, f, 51i-k.

Holotype (by original designation). — MNHN-B20289, Seychelles Islands, CEPROS, *Alis*, radial 3, sample 16, 4°34.7'S, 56°25.6'E, trap, 410-390 m, 22.X.1987, A. Intès coll., ♂ 40.6 × 29.7 mm.

Paromola bathyalis Guinot & Richer de Forges, 1995
(Fig. 22A)

Paromola bathyalis Guinot & Richer de Forges, 1995: 369, figs 20A, B, 22B, 23c-e, 24A-C, 25g, h, 26B, C.

Holotype (by original designation). — MNHN-B20105, New Caledonia, SMIB 3, *Vauban*, stn DW1, 24°55.7'S, 168°21.8'E, 520 m, 20.V.1987, ♂ 97.0 × 75.6 mm.

Paromola crosnieri Guinot & Richer de Forges, 1995
(Fig. 22B)

Paromola crosnieri Guinot & Richer de Forges, 1995: 371, figs 22c, 25a, b, e, 26a, 27g.

Holotype (by original designation). — MNHN-B7034, Madagascar, north west coast, *Vauban*, stn 39, 12°46.5'S, 48°10.4'E, 495-500 m, trawl, 15.IX.1972, A. Crosnier coll., ♀ 70.0 × 61.6 mm.

Family *POUPINIIDAE* Guinot, 1991

Poupinia hirsuta Guinot, 1991
(Fig. 22C)

Poupinia hirsuta Guinot, 1991: 583, figs 1-5, pls I-III.

Allotype. — MNHN-B24346, same data as holotype, ♀ 54 × 41 mm.

Subsection *ARCHAEOBRACHYURA*
Guinot, 1977

Superfamily *CYCLODORIPPOIDEA* Ortmann, 1892
Family *CYCLODORIPPIDAE* Ortmann, 1892
1. Subfamily *CYCLODORIPPINAE* Ortmann, 1892

Cyclodorippe agassizii A. Milne-Edwards, 1880

Cyclodorippe angulata Tavares, 1991

Paralectotype. — MNHN-B13492, West Indies, *Carriacou, Blake*, stn 238, 127 fathoms (232 m), A. Agassiz coll., ♀ 6.0 × 6.2 mm, carapace damaged, incomplete, only chelipeds and 2 other pereopods remaining. — Original label: “Carriacou [sic], Blake, No 238, 127 brasses, A. Agassiz, TYPE”.

Remarks
The MNHN specimen, originally not mentioned in A. Milne-Edwards (1880), must be considered a syntype. A label from Tavares (1992) indicated: “Specimen compared with the female holotype”. In fact, “holotype” constitutes a misuse of the Code (ICZN 1999: Art. 74.5) and must be replaced by lectotype (lectotype, MCZ 6680, ♀ 7.5 × 8 mm, *Blake*, stn 241, 163 fathoms [298 m], see Tavares 1996: 263).

Cyclodorippe angulata Tavares, 1991
(Fig. 23A)

Cyclodorippe angulata Tavares, 1991a: 633, figs 6B, 8C, 11A-C.
PARATYPE. — MNHN-B24337, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, stn 16, 20°26'S, 31°41'W, DC29, 270-350 m, 2.VI.1987, ♂ 4 × 4 mm.

Remarks
Holotype, MZUSP-12066, same data as paratype, ov. ♀ 5.0 × 5.0 mm.

Cyclodorippe antennaria
A. Milne-Edwards, 1880
(Fig. 23B)

Paralectotype (lectotype designated by Tavares 1996). — MNHN-B13483, West Indies, Barbados, Blake, stn 291, 200 fathoms (365 m), A. Agassiz coll., ov. ♀ 5.3 × 5.9 mm, legs detached. — Original label: “Cyclodorippe antennaria A. M. Edwards, 1880, Barbades, Nº 291, 200 brasses, (typique)”. PARATYPE. — MNHN-B29382, same data as holotype, 1 ov. ♀.

Remarks
The lectotype was designated by M. Tavares (label in the vial) (Tavares 1996: 266). Lectotype, MCZ 6675, 1 ♂ (Tavares 1996).

Cyclodorippe nitida A. Milne-Edwards, 1880

Remarks
The depth “128 brasses” does not appear in the list of the stations given by A. Milne-Edwards (1880: 25) but is quoted by A. Milne-Edwards & Bouvier (1902: 93). Additionally, the mention “Co-types” gives evidence that the sample MNHN-B39 is part of the type series. The lot MNHN-B39 was not examined by Tavares in his revision of American Cyclodorippidae (Tavares 1996: 253). As he selected a lectotype (MCZ 6671), the MNHN-B39 specimens can be considered as paralectotypes.

Deilocerus hendrickxi Tavares, 1993
(Fig. 23C)

Deilocerus hendrickxi Tavares, 1993a: 140.

Holotype (by original designation). — MNHN-B22664, Mexico, Gulf of California, GUAYTEC II, El Pluma, stn 68, 29°35’N, 113°33’W, 162-175 m, ♂ 6.5 × 7.8 mm.

Paratype. — MNHN-B29382, same data as holotype, 1 ov. ♀.

Tymolus brucei Tavares, 1991
(Fig. 24D)

Tymolus brucei Tavares, 1991b: 451, figs 2, 7, 8B, 9D, 10C.

Paratype. — MNHN-B24460, Western Australia, CSIRO 0184, Soela, stn NSW-57, 17°30.1’S, 118°28.9’E, T/33, 504-506 m, 3.II.1984, A. J. Bruce coll., ♀ 5.5 × 6.0 mm.

Remarks
Holotype, NTM-Cr.001179, same data as paratype, ♂ 4.0 × 5.0 mm. Also see Davie (2002: 146).

Tymolus daviei Tavares, 1997
(Fig. 25A)

Tymolus daviei Tavares, 1997: 263, figs 1A, B, 2, 3A-C.

Holotype (by original designation). — MNHN-B25248, New Caledonia, BATHUS 2, Alis, stn CP743, 22°35.56’S, 166°26.23’E, 713-950 m, 14.V.1993, B. Richer de Forges coll., ♂ 10.0 × 11.0 mm.

Paratypes. — MNHN-B28952, New Caledonia, BATHUS 1, Alis, stn CP698, 20°34.18’S, 164°57.32’E, 491-533 m (cited as 713-950 m in Tavares 1997), 17.III.1993, B. Richer de Forges coll., 1 ♂ juven. — MNHN-B28949, New Caledonia, BATHUS 2, Alis, stn CP741, 22°35.5’S, 166°26.2’E, 700-950 m, 14.V.1993, B. Richer de Forges coll., 5 ♂♂, 1 ♀. — MNHN-B28946, same data as holotype, 5 ♂♂, 2 ♀♀, 17 ov. ♀♀ (1 ♂ dissected, 1 ov. ♀ used

2. Subfamily XEINOSTOMATINAE Tavares, 1992

Ketamia bandokoi Tavares, 1993

(Fig. 23D)

Ketamia bandokoi Tavares, 1993b: 301 (in key), 303, fig. 17a-c.

HOLOTYPE (by original designation). — MNHN-B24681, Indonesia, Kai Islands, KARUBAR, Baruna Jaya 1, stn CP15, 5°17.38'S, 132°41.07'E, 214-221 m, 24.X.1991, σ 10.0 × 11.0 mm, 1 P1, 1 P4, 1 P5 missing.

Ketamia limatula Tavares, 1993

(Fig. 24A)

Ketamia limatula Tavares, 1993b: 301 (in key), 303, fig. 17a-c.

HOLOTYPE (by original designation). — MNHN-B24681, Indonesia, Kai Islands, KARUBAR, Baruna Jaya 1, stn CP15, 5°17.38'S, 132°41.07'E, 214-221 m, 24.X.1991, σ 10.0 × 11.0 mm, 1 P1, 1 P4, 1 P5 missing.

Ketamia proxima Tavares, 1993

(Fig. 24B)

Ketamia proxima Tavares, 1993b: 301 (in key), 305, fig. 19a, b.

255
Xeinostoma richeri Tavares, 1993
(Fig. 25C)

Xeinostoma richeri Tavares, 1993b: 289 (in key), 293, figs 13b, 14d, e.

Holotype (by original designation). — MNHN-B24593, Coral Sea, Chesterfield Islands, MUSORSTOM 5, *Coriolis*, stn DW274, 24°44.83' S, 159°41'E, 285 m, 9.X.1986, ♀ 4.9 × 5.1 mm.

Paratypes. — MNHN-B24594, Chesterfield Islands, MUSORSTOM 5, *Coriolis*, stn CP275, 24°10.60'S, 159°40.30'E, 285 m, 10.X.1986, 1 ♀. — MNHN-B24595, same cruise, stn CP288, 24°01.50’S, 159°38.40'E, 273 m, 10.X.1986, 1♀. — MNHN-B24596, same cruise, stn CP289, 24°04.80'S, 159°36.80'E, 270 m, 9.X.1986, ♀ 4.9 × 5.1 mm.

Remarks

Holotype, NSMT-Cr9805, Japan, Minabe, Kii Peninsula, Honshu, ♀ 10.0 × 11.0 mm.

Xeinostoma sakaii Tavares, 1993
(Fig. 25D)

Xeinostoma sakaii Tavares, 1993b: 288 (in key), 292, figs 13c, 14b, c.

Paratype. — MNHN-B13484, Philippine Islands, MUSORSTOM 1, *Vauban*, stn 51, 13°49.4’S, 120°04.2’W, 190-200 m, 25.III.1976, ♀ legs detached.

Remarks

Holotype, MZUSP-10269, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, stn 57, CB97, ♀ 2.5 × 2.0 mm.

Family CYMONOMIDAE Bouvier, 1897

Cymonomus guillei Tavares, 1991
(Fig. 26A)

Cymonomus guillei Tavares, 1991a: 639, figs 7B, 8D, 9A, 11D.

Paratypes. — MNHN-B24339, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, stn 54, CB93, 19°36’S, 38°53’W, 707-733 m, 30.VII.1987, 1♀, legs detached.

Remarks

Holotype, MNHN-B24340, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, stn 57, CB97, ♀ 4.0 × 3.5 mm.

Cymonomus guinotae Tavares, 1991
(Fig. 26D)

Cymonomus guinotae Tavares, 1991a: 640, figs 7C, 8B, 9B, 10A-C.

Paratype. — MNHN-B24340, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, stn 57, CB97, ♀ 2.5 × 2.0 mm.

Remarks

Holotype, MNHN-B24340, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, ♀ 4.0 × 3.5 mm.

Cymonomus leblondi Tavares, 1994
(Fig. 26B)

Cymonomus leblondi Tavares, 1994: 204, figs 1, 2a-c.

Holotype. (by original designation). — MNHN-B24782, West Indies, Guadeloupe, ORSTOM-IRPM-SMCB cruise, *Polka*, stn E32, 16°22.56’N, 61°49.48’W, trap, 400 m, 4.IV.1993, ♀ 6.5 × 6.0 mm.

Remarks

Holotype, MNHN-B24782, West Indies, Guadeloupe, ORSTOM-IRPM-SMCB cruise, *Polka*, stn E32, 16°22.56’N, 61°49.48’W, trap, 600 m, 4.IV.1993, ♀ 6.5 × 6.0 mm.
PARATYPES. — MNHN-B24338, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, stn 54, CB93, 19°36’S, 38°53’W, 707-733 m, 30.V.1987, 2 ♀♀ (1 ov.) (2 ♀♀, 1 ♂, in Tavares 1991a), non ovigerous female with carapace broken and abdomen detached.

REMARKS
Holotype, MZUSP-10267, Brazil, TAAF MD55/Brésil 1987, Marion Dufresne, stn 64, CB1205, 592-610 m, ov. ♀ 5.0 × 4.0 mm.

Cymopolus asper A. Milne-Edwards, 1880

Cymopolus asper A. Milne-Edwards, 1880: 27.

SYNTYPE. — MNHN-B13479, West Indies, Monserat, Blake, stn 158, 148 fathoms (270 m), A. Agassiz coll., 1-99, ♂, carapace detached and broken, abdomen detached; many pereopods detached, uncomplete or missing. — Original label: “Cymopolus asper A. M. Edw. 1880 (Co-type), Nº 158, 148 brasses”.

Elassopodus stellatus Tavares, 1993

Elassopodus stellatus Tavares, 1993b: 307, figs 2h, 20a, b.

HOLOTYPE (by original designation). — MNHN-B24620, New Caledonia, BIOCAL, Jean Charcot, stn DW51, 23°05.27’S, 167°44.95’E, 700 m, 31.VIII.1985, ♀ 6.5 × 5.5 mm, one other pereopod remaining, detached.

Family Phyllotymolinidae Tavares, 1998

Genkaia keiji Tavares, 1993

Genkaia keiji Tavares, 1993b: 281 (in key), 282, figs 2d, 11a-e, 13d.

HOLOTYPE (by original designation). — MNHN-B24619, New Caledonia, Saint Vincent Bay, LAGON, stn 190, 22°02.1’S, 165°57.3’E, 135-150 m, ♂ 3.9 × 4.0 mm, 2 P1 and 2 ambulatory legs remaining, detached.

Phyllotymolinum crosnieri Tavares, 1993

Phyllotymolinum crosnieri Tavares, 1993b: 286, figs 2g, 12a-e.

Superfamily Raninoidea De Haan, 1839
Family Raninidae De Haan, 1839

Cosmonotus mclaughliniae Tavares, 2006

Cosmonotus mclaughliniae Tavares, 2006: 534, fig. 1.

HOLOTYPE (by original designation). — MNHN-B24948, Philippine Islands, MUSORSTOM 3, Coriolis, stn CP96, 14°00’N, 120°18’E, 190-194 m, 1.VI.1985, ♂ 9 mm, right P2 missing.

PARATYPES. — MNHN-B20350, Southwestern Indian Ocean, Réunion, Cruise MD32, stn DC86, 20°59.3’S, 55°15.1’E, 75-90 m, 27.VIII.1982, 1 ♂, 1 ov. ♂, 1 ♀ juv. — MNHN-B13419, same cruise, stn CP55, 13°55.0’N, 120°12.5’E, 200-194 m, 26.III.1976, 1 ♀. — MNHN-B12319, same cruise, stn CP71, 14°09.3’N, 120°26.2’E, 174-204 m, 28.III.1976, 1 ♂, 1 ♀ juv. — MNHN-B29930, Philippine Islands, MUSORSTOM 2, Vautan, stn CP51, 13°59.3’N, 120°16.4’E, 170-187 m, 27.XI.1980, 1 ♂. — MNHN-

Some paratypes have some pereopods detached or missing.

Cyrtorhina granulosa Monod, 1956
(Fig. 28B)

Holotype (by original designation). — MNHN-B215, unknown origin, labelled “*Cyrtorina granulosa* A. Edw.” (sic, nomen nudum of A. Milne-Edwards), ♂ 33 × 29 mm, dry.

Remarks

The provenance of the holotype is unknown but the species is recorded from West Africa.

Lysirude griffini Goeke, 1985
(Fig. 28D)

Holotype (by original designation). — MNHN, Philippines, Vauban, MUSORSTOM 1, stn 11, 13°59.8’N, 120°23.7’E, 217-230 m, 20.III.1976, ♀.

Paratypes. — MNHN, Philippines, Vauban, MUSORSTOM 2, stn 26, 13°49.6’N, 120°51.0’E, 299-320 m, 23.XI.1980, 2 ♀♀.

Remarks
1 ♀ paratype: USNM 216757.

The MNHN specimens are presently missing.

Ranina loevis Latreille, 1825
(Fig. 28F)

Ranina loevis Latreille, 1825: 268.

Current status. — *Raninoides laevis* (Latreille, 1825).

Lectotype (by present designation). — MNHN-B4648, without mention of origin, previously labelled “*R. dorsipes* Lamk.” on the back of the ancient box, examined by M. Tavares in 2004, ♀ 31 mm length, dry and in rather bad condition, carapace broken, part of abdomen and several legs missing.

Remarks

The original description of *Ranina loevis* by Latreille (1825: 268) does not imply that his material, without origin, consisted of a single specimen. The specimen MNHN-B4648, which corresponds to the carapace length “14 lignes” indicated by H. Milne Edwards (1837: 197, as *Raninoides levis*), is considered as the lectotype herein. In his handwritten catalogue (1814), Latreille wrote that *Ranina dorsipes* Lamarck “n’est ni l’*Albunea dorsipes* de Fabricius ni le *Cancer dorsipes* de Linné. Il faudra changer le nom spécifique en *R. lisse*, *R. laevis* Lam.”. See also A. Milne-Edwards & Bouvier (1923: 299, as *Raninoides laevis*); Rathbun 1937: 8; Dawson & Yaldwyn 1994 (*Raninoides laevis*).

Raninoides crosnieri Ribes, 1989
(Fig. 28D)

Raninoides crosnieri Ribes, 1989: 908, fig. 1a-h, pl. 2A-D.

Holotype (by original designation). — MNHN-B18966, Madagascar, Vauban, stn 44, 15°25.7’S, 46°01’E, trawl, 200-210 m, 7.XI.1972, A. Crosnier coll., ♀ 22.8 × 14.3 mm, abdomen partially detached.

Paratypes. — MNHN-B20650, same data as holotype, 1 ♀, abdomen detached and carapace broken, missing posteriorly. — MNHN-B18965, Madagascar, Morombé, FAO 60, stn 73/90, 21°51’S, 43°10’E, trawl, 160 m, 9.VIII.1973, 1 ov. ♀, some legs detached.
Raninoides fossor A. Milne-Edwards
in A. Milne-Edwards & Bouvier, 1923
(Fig. 28E)

Raninoides fossor A. Milne-Edwards in A. Milne-Edwards & Bouvier, 1923: 300, pl. 1, fig. 10, pl. 2, figs 2, 3.

Current status. — Notosceles chimmonis Bourne, 1922.

Holotype (by monotypy). — MNHN-B218 (holotype indicated by Tavares on a label in Sept. 2004), without mention of origin, Manning 1974 det. Notosceles chimmonis, sex unknown, about 16.0 × 10.0 mm, dry, badly damaged, carapace broken, many appendages detached or missing.

Remarks
Rathbun (1937:16) and Manning (1975: 295) correctly considered this single individual as the holotype, on which A. Milne-Edwards & Bouvier (1923) based their description. Tavares (pers. comm. 2004) compared this specimen to the lectotype of Notosceles chimmonis. Also see Dawson & Yaldwyn (1994).

Raninoides laevis var. lamarcki
A. Milne-Edwards & Bouvier, 1923
(Fig. 28G)

Raninoides laevis var. lamarcki A. Milne-Edwards & Bouvier, 1923: 299, pl. 1, figs 8, 9, pl. 2, figs 4, 5.

Lectotype (by present designation). — MNHN-B16168, without mention of origin, Raninoides laevis var. lamarcki, ♀ 23.0 × 12.0 mm, some legs detached and/or uncomplete.

Remarks
This female, which seems to be the single specimen on which the description was based, is designated as the lectotype. For the synonymy see Dawson & Yaldwyn 1994.

Raninops stimpsoni A. Milne-Edwards, 1880
(Fig. 28C)

Raninops stimpsoni A. Milne-Edwards, 1880: 35.

Remarks
Complete description and figures in A. Milne-Edwards & Bouvier (1923: 303, as Ranilia stimpsoni). This taxon is no longer valid.

Symethis corallica Davie, 1989
(Fig. 28H)

Symethis corallica Davie, 1989: 426, fig. 1, pl. 1.

Holotype (by original designation). — MNHN-B20795, Coral Sea, Chesterfield Islands, CORAIL 2, Coriolis, 19°14.99’S, 158°50.89’E, dredge, 64 m, 24.VII.1988, P. Davie & B. Richer de Forges coll., ♀ 24.0 × 15.6 mm.

Paratype. — MNHN-B20895, same cruise, 19°12.01’S, 158°35.98’E, dredge, 60 m, 25.VII.1988, 1♂.

Acknowledgements
We are grateful to the “Direction des Collections” of MNHN, particularly M. Guiraud, Director, and C. Leroy who provided material and financial support. We are greatly indebted to J.-M. Pacaud (MNHN, “Département Histoire de la Terre”) who generously shared with us his great knowledge of the ICZN and who provided pertinent discussions on nomenclatural concepts and their uses, and to J. Guglielmi, librarian in the Entomology section of the Département Systématique et Évolution, MNHN, who provided us with information about Latreille’s catalogues and made them available to us. We are grateful to M. Tavares (MZUSP) for his information on the types of the Raninidae and to W. Santana (MZUSP) for providing two photographs of Cyclo dorippoidea. We sincerely thank P. Castro (California State Polytechnic University, Pomona) and P. Clark (BMNH) who reviewed the manuscript and improved it with constructive comments.
Fig. 5. — **A**, *Dicranodromia crosnieri* Guinot, 1995 (MNHN-B6919); **B**, *D. felderi* Martin, 1990 (MNHN-B22699); **C**, *D. foersteri* Guinot, 1993 (MNHN-B22700); **D**, *D. karubar* Guinot, 1993 (MNHN-B22846).

Fig. 6. — **A**, *Dicranodromia nagai* Guinot, 1995 (MNHN-B24870); **B**, *D. pequegnati* Guinot, 1995 (MNHN-B21682); **C**, *D. spinulata* Guinot, 1995 (MNHN-B22701); **D**, *Homolodromia kai* Guinot, 1993 (MNHN-B22845).
Fig. 7. — **A**, *Conchoecetes intermedius* Lewinsohn, 1984 (MNHN-B6891); **B**, *Cryptodromia erioxylon* McLay, 2001 (MNHN-B26473); **C**, *C. fallax* Latreille, 1812 (MNHN-B9); **D**, *C. longipes* McLay, 1993 (MNHN-B22569).

Fig. 8. — **A**, *Cryptodromia marquesas* McLay, 2001 (MNHN-B26469); **B**, *C. pitiensis* McLay, 2001 (MNHN-B27522); **C**, *Dromia bollorei* Forest, 1974 (MNHN-B21993); **D**, *D. erythropus* (George Edwards, 1831) (MNHN-B4015).
FIG. 9. — A, Dromia marmorea Forest, 1974 (MNHN-B21901); B, D. nodosa A. Milne-Edwards & Bouvier, 1898 (MNHN-B7834); C, Dromidiopsis edwardsi Rathbun, 1919 (MNHN-B2); D, Dromidia hirsutissima (Lamarck, 1818) (MNHN-B22034); E, Dromidiopsis richeri McLay, 2001 (MNHN-B26471).

FIG. 10. — A, Epigodromia rotunda McLay, 1993 (MNHN-B22576); B, Hemisphaerodromia monodus (Stebbing, 1918) (MNHN-B7849); C, Epigodromia rugosa McLay, 1993 (MNHN-B22578); D, Mclaydromia colini Guinot & Tavares, 2003 (MNHN-B22546); E, M. dubia (Lewinsohn, 1984) (MNHN-B6894).
Fig. 11. — A, Platydromia spongiosa (Stimpson, 1858) (MNHN-B27934); B, Stebbingdromia plumosa (Lewinsohn, 1984) (MNHN-B8572); C, Dromia monodi Forest & Guinot, 1966 (MNHN-B7835); D, Stimdromia foresti (McLay, 1993) (MNHN-B22553); E, Takedromia longispina McLay, 1993 (MNHN-B22572).

Fig. 12. — A, Hypoconcha californiensis Bouvier, 1898 (MNHN-B22066); B, H. panamensis Smith in Verrill, 1869 (MNHN-B22070).

Fig. 15. — A, Dynomene hispida Guérin-Méneville, 1832 (MNHN-B23); B, D. praedator A. Milne-Edwards, 1879 (MNHN-B3991); C, Hirsutodynomene ursula (Stimpson, 1860) (MNHN-B3992); D, Metadynomene crosnieri McLay, 1999 (MNHN-B22510).

Fig. 16. — A, Paradynomene demon McLay & Ng, 2004 (MNHN-B26602); B, P. diablo McLay & Ng, 2004 (MNHN-B26610); C, P. rotunda McLay & Ng, 2004 (MNHN-B26604).

Fig. 19. — **A**, *Homologenus levii* Guinot & Richer de Forges, 1995 (MNHN-B16682); **B**, *H. wallis* Guinot & Richer de Forges, 1995 (MNHN-B24699); **C**, *Homolomannia occlusa* Guinot & Richer de Forges, 1981 (MNHN-B6993).

Fig. 20. — **A**, *Lamoha longirostris* (Chen, 1986) (MNHN-B24697); **B**, *Ihlopsis tirardi* Guinot & Richer de Forges, 1995 (MNHN-B20283); **C**, *Lamoha inflata* (Guinot & Richer de Forges, 1981) (MNHN-B7024); **D**, *L. personata* (Guinot & Richer de Forges, 1981) (MNHN-B7022).

Fig. 23. — A. Cyclodorippe angulata Tavares, 1991 (MNHN-B24337); B. C. antennaria A. Milne-Edwards, 1880 (MNHN-B13483); C. Deilocerus hendrickxi Tavares, 1993 (MNHN-B22664); D. Ketamia handokoi Tavares, 1993 (MNHN-B24681).

Fig. 24. — A. Ketamia limatula Tavares, 1993 (MNHN-B24607); B. K. proxima Tavares, 1993 (MNHN-B24605); C. Krangalangia orstrom Tavares, 1993 (MNHN-B24575); D. Tymolus brucei Tavares, 1991 (MNHN-B24460).

Catalogue of MNHN brachyuran types: Podotremata (Crustacea, Decapoda)

A, Elissopodus stellatus Tavares, 1993 (MNHN-B24620); B, Genkaia keijii Tavares, 1993 (MNHN-B24619); C, Phyllotymolinum crosnieri Tavares, 1993 (MNHN-B24617).

A, Cosmonotus mclaughlinae Tavares, 2006 (MNHN-B29929); B, Cytorthina granulosa Monod, 1956 (MNHN-B215); C, Ranilia muricata H. Milne Edwards, 1837 (MNHN-B16170); D, Raninoides crosnieri Ribes, 1989 (MNHN-B18966); E, Notosceles chimmonis Bourne, 1922 (MNHN-B218); F, Raninoides laevis (Latreille, 1825) (MNHN-B4648); G, R. lamarcki A. Milne-Edwards & Bouvier, 1923 (MNHN-B16168); H, Symethis corallica Davie, 1989 (MNHN-B20795).
REFERENCES

Submitted on 27 January 2006; accepted on 4 September 2006.
INDEX OF TAXA
Page numbers in bold refer to illustrations.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>abellana, Hemisphaerodromia</td>
<td>244</td>
</tr>
<tr>
<td>aegagropila, Dromia</td>
<td>241</td>
</tr>
<tr>
<td>agassizii, Cyclodorippe</td>
<td>253</td>
</tr>
<tr>
<td>Albunea dorsipes</td>
<td>258</td>
</tr>
<tr>
<td>aliae, Moloba</td>
<td>253, 268</td>
</tr>
<tr>
<td>angulata, Cyclodorippe</td>
<td>253, 269</td>
</tr>
<tr>
<td>antennata, Latreillipsis</td>
<td>252, 268</td>
</tr>
<tr>
<td>antennaria, Cyclodorippe</td>
<td>254, 269</td>
</tr>
<tr>
<td>Archaeobrachyura</td>
<td>253</td>
</tr>
<tr>
<td>asper, Cymopolus</td>
<td>257</td>
</tr>
<tr>
<td>bathyalis, Paromola</td>
<td>253, 268</td>
</tr>
<tr>
<td>bollorei, Dromia</td>
<td>240, 261</td>
</tr>
<tr>
<td>boucheti, Homologenus</td>
<td>250, 266</td>
</tr>
<tr>
<td>Brachyura</td>
<td>234, 237</td>
</tr>
<tr>
<td>brizops, Sphaerodromia</td>
<td>245, 264</td>
</tr>
<tr>
<td>broussiei, Homologenus</td>
<td>250, 266</td>
</tr>
<tr>
<td>brucei, Tymolus</td>
<td>254, 269</td>
</tr>
<tr>
<td>californiensis, Hypoconcha</td>
<td>245, 263</td>
</tr>
<tr>
<td>Cancer dorsipes</td>
<td>258</td>
</tr>
<tr>
<td>caputmortuum, Dromia</td>
<td>243</td>
</tr>
<tr>
<td>capt-mortuum, Dromia</td>
<td>243</td>
</tr>
<tr>
<td>chimmonis, Notosceles</td>
<td>259, 271</td>
</tr>
<tr>
<td>Cythrocercus nitidus</td>
<td>254</td>
</tr>
<tr>
<td>colini, Mclaydromina</td>
<td>244, 262</td>
</tr>
<tr>
<td>Conchoecetes intermedius</td>
<td>239, 261</td>
</tr>
<tr>
<td>corallica, Symethis</td>
<td>259, 271</td>
</tr>
<tr>
<td>coriolisi, Homola</td>
<td>249, 266</td>
</tr>
<tr>
<td>Cosmonotus mclaughliniae</td>
<td>257, 271</td>
</tr>
<tr>
<td>crosnier, Dicranodromia</td>
<td>237, 260</td>
</tr>
<tr>
<td>crosnier, Metadynomene</td>
<td>248, 265</td>
</tr>
<tr>
<td>crosnier, Paromola</td>
<td>253, 268</td>
</tr>
<tr>
<td>crosnier, Phyllyrominulium</td>
<td>257, 271</td>
</tr>
<tr>
<td>crosnier, Raninoides</td>
<td>258, 271</td>
</tr>
<tr>
<td>Cryptodromia erioxylon</td>
<td>239, 261</td>
</tr>
<tr>
<td>Cryptodromia fallax</td>
<td>240, 261</td>
</tr>
<tr>
<td>Cryptodromia longipes</td>
<td>239, 261</td>
</tr>
<tr>
<td>Cryptodromia marquescas</td>
<td>240, 261</td>
</tr>
<tr>
<td>Cryptodromia monodus</td>
<td>244</td>
</tr>
<tr>
<td>Cryptodromia pitiensis</td>
<td>240, 261</td>
</tr>
<tr>
<td>Cyclodorippe agassizii</td>
<td>253</td>
</tr>
<tr>
<td>Cyclodorippe angulata</td>
<td>253, 269</td>
</tr>
<tr>
<td>Cyclodorippe antennaria</td>
<td>254, 269</td>
</tr>
<tr>
<td>Cyclodorippe nitida</td>
<td>254</td>
</tr>
<tr>
<td>Cyclodorippidae</td>
<td>236, 253</td>
</tr>
<tr>
<td>Cyclodorippinae</td>
<td>253</td>
</tr>
<tr>
<td>Cyclodorippoidea</td>
<td>253</td>
</tr>
<tr>
<td>Cymomonidae</td>
<td>236, 256</td>
</tr>
<tr>
<td>Cymonomoides guinotae</td>
<td>256, 270</td>
</tr>
<tr>
<td>Cymonomus guillei</td>
<td>256, 270</td>
</tr>
<tr>
<td>Cymonomus guinotae</td>
<td>256</td>
</tr>
<tr>
<td>Cymonomus leblondi</td>
<td>256, 270</td>
</tr>
<tr>
<td>Cymonomus magnirostris</td>
<td>256, 270</td>
</tr>
<tr>
<td>Cymopolus asper</td>
<td>257</td>
</tr>
<tr>
<td>Cyrtorhina granulosa</td>
<td>258, 271</td>
</tr>
<tr>
<td>daviei, Latreillipsis</td>
<td>252, 268</td>
</tr>
<tr>
<td>daviei, Tymolus</td>
<td>254, 270</td>
</tr>
<tr>
<td>Decapoda</td>
<td>237</td>
</tr>
<tr>
<td>Deilocerus hendricksi</td>
<td>254, 269</td>
</tr>
<tr>
<td>demon, Paradynomene</td>
<td>248, 265</td>
</tr>
<tr>
<td>denticulata, Eodromia</td>
<td>245, 264</td>
</tr>
<tr>
<td>depresa, Platydromia</td>
<td>244</td>
</tr>
<tr>
<td>diablo, Paradynomene</td>
<td>248, 265</td>
</tr>
<tr>
<td>Dicranodromia crosnier</td>
<td>237, 260</td>
</tr>
<tr>
<td>Dicranodromia doederleini</td>
<td>238</td>
</tr>
<tr>
<td>Dicranodromia felderi</td>
<td>237, 260</td>
</tr>
<tr>
<td>Dicranodromia foersteri</td>
<td>238, 260</td>
</tr>
<tr>
<td>Dicranodromia karubar</td>
<td>238, 260</td>
</tr>
<tr>
<td>Dicranodromia mahieuxii</td>
<td>238, 239</td>
</tr>
<tr>
<td>Dicranodromia Mahyuxii</td>
<td>238, 239</td>
</tr>
<tr>
<td>Dicranodromia nagai</td>
<td>238, 260</td>
</tr>
<tr>
<td>Dicranodromia ovata</td>
<td>238, 239</td>
</tr>
<tr>
<td>Dicranodromia pequegnati</td>
<td>238, 239, 260</td>
</tr>
<tr>
<td>Dicranodromia spinulata</td>
<td>239, 260</td>
</tr>
<tr>
<td>diguetti, Hypoconcha</td>
<td>245</td>
</tr>
<tr>
<td>doederleini, Dicranodromia</td>
<td>238</td>
</tr>
<tr>
<td>dorsipes, Albunea</td>
<td>258</td>
</tr>
<tr>
<td>dorsipes, Cancer</td>
<td>258</td>
</tr>
<tr>
<td>dorsipes, Ranina</td>
<td>258</td>
</tr>
<tr>
<td>Dromia aegagropila</td>
<td>241, 242</td>
</tr>
<tr>
<td>Dromia bollorei</td>
<td>240, 261</td>
</tr>
<tr>
<td>Dromia caputmortuum</td>
<td>243</td>
</tr>
<tr>
<td>Dromia caput-mortuum</td>
<td>243</td>
</tr>
<tr>
<td>Dromia erythropus</td>
<td>242, 261</td>
</tr>
<tr>
<td>Dromia fallax</td>
<td>240</td>
</tr>
<tr>
<td>Dromia foresti</td>
<td>240, 241</td>
</tr>
<tr>
<td>Dromia gibboa</td>
<td>241</td>
</tr>
<tr>
<td>Dromia globoa</td>
<td>241</td>
</tr>
<tr>
<td>Dromia hirtissima</td>
<td>241, 242</td>
</tr>
<tr>
<td>Dromia hirtissima</td>
<td>241</td>
</tr>
<tr>
<td>Dromia indica</td>
<td>241</td>
</tr>
<tr>
<td>Dromia lator</td>
<td>242</td>
</tr>
<tr>
<td>Dromia Lator</td>
<td>242</td>
</tr>
<tr>
<td>Dromia marmoreta</td>
<td>242, 262</td>
</tr>
<tr>
<td>Dromia monodi</td>
<td>242, 263</td>
</tr>
<tr>
<td>Dromia nodipes</td>
<td>242, 243</td>
</tr>
<tr>
<td>Dromia nodosa</td>
<td>242, 243, 262</td>
</tr>
<tr>
<td>Dromiaea</td>
<td>237</td>
</tr>
<tr>
<td>Dromidia hirtissima</td>
<td>241, 242, 262</td>
</tr>
<tr>
<td>Dromidiosis dubia</td>
<td>243</td>
</tr>
<tr>
<td>Dromidiosis plumosa</td>
<td>243</td>
</tr>
<tr>
<td>Species</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dromidiopsis edwardsi</td>
<td>243, 262</td>
</tr>
<tr>
<td>Dromidiopsis richeri</td>
<td>244, 262</td>
</tr>
<tr>
<td>Dromiidae</td>
<td>236, 239</td>
</tr>
<tr>
<td>Dromiinae</td>
<td>239</td>
</tr>
<tr>
<td>Dromiidae</td>
<td>236, 239</td>
</tr>
<tr>
<td>dubia, Melaydromia</td>
<td>243, 262</td>
</tr>
<tr>
<td>dubia, ?Dromidiopsis</td>
<td>243</td>
</tr>
<tr>
<td>ducousoi, Sphaerodromia</td>
<td>245, 264</td>
</tr>
<tr>
<td>Dynomena latreillii</td>
<td>247</td>
</tr>
<tr>
<td>Dynomena guamensis</td>
<td>246, 264</td>
</tr>
<tr>
<td>Dynomene hispida</td>
<td>246, 247, 264, 265</td>
</tr>
<tr>
<td>Dynomene kroppii</td>
<td>247, 264</td>
</tr>
<tr>
<td>Dynomene latreilleani</td>
<td>247</td>
</tr>
<tr>
<td>Dynomene latreillii</td>
<td>247</td>
</tr>
<tr>
<td>Dynomene praedator</td>
<td>247, 248, 265</td>
</tr>
<tr>
<td>Dynomene ursula</td>
<td>248</td>
</tr>
<tr>
<td>edwardsi, Dromidiopsis</td>
<td>243, 262</td>
</tr>
<tr>
<td>Elassopodus stellatus</td>
<td>257, 271</td>
</tr>
<tr>
<td>eldredgei, Homola</td>
<td>249, 266</td>
</tr>
<tr>
<td>Eodrimia denticulata</td>
<td>245, 264</td>
</tr>
<tr>
<td>Epigodromia rotunda</td>
<td>244, 262</td>
</tr>
<tr>
<td>Epigodromia rugosa</td>
<td>244, 262</td>
</tr>
<tr>
<td>erioclyon, Cryptodromia</td>
<td>239, 261</td>
</tr>
<tr>
<td>erythropus, Dromia</td>
<td>242, 261</td>
</tr>
<tr>
<td>Eubrachyura</td>
<td>236</td>
</tr>
<tr>
<td>fallax, Dromia</td>
<td>240</td>
</tr>
<tr>
<td>fallax, Cryptodromia</td>
<td>240, 261</td>
</tr>
<tr>
<td>felderi, Dicranodromia</td>
<td>237, 260</td>
</tr>
<tr>
<td>filholi, Dynomene</td>
<td>246, 264</td>
</tr>
<tr>
<td>foersteri, Dicranodromia</td>
<td>238, 260</td>
</tr>
<tr>
<td>foresti, Dromia</td>
<td>240, 241</td>
</tr>
<tr>
<td>foresti, Stimdromia</td>
<td>241, 263</td>
</tr>
<tr>
<td>fossor, Raninoides</td>
<td>259</td>
</tr>
<tr>
<td>Futolodromia nodipes</td>
<td>242</td>
</tr>
<tr>
<td>futuna, Hypsophrys</td>
<td>251</td>
</tr>
<tr>
<td>gadaletae, Homolochunia</td>
<td>250, 266</td>
</tr>
<tr>
<td>Genkaia kejji</td>
<td>257, 271</td>
</tr>
<tr>
<td>gibboa, Dromia</td>
<td>241</td>
</tr>
<tr>
<td>gibboa, Dromia</td>
<td>241</td>
</tr>
<tr>
<td>gibboa, Lararckdromia</td>
<td>241</td>
</tr>
<tr>
<td>gracilipes, Latreilopsis</td>
<td>252, 268</td>
</tr>
<tr>
<td>granulosa, Cyrtorhina</td>
<td>258, 271</td>
</tr>
<tr>
<td>griffini, Lysirude</td>
<td>258</td>
</tr>
<tr>
<td>guamensis, Dynomene</td>
<td>246, 264</td>
</tr>
<tr>
<td>guinotae, Gymnomonoides</td>
<td>256, 270</td>
</tr>
<tr>
<td>guinotae, Gymnomus</td>
<td>256</td>
</tr>
<tr>
<td>guillen, Gymnomonomus</td>
<td>56, 270</td>
</tr>
<tr>
<td>handokoi, Ketamia</td>
<td>255, 269</td>
</tr>
<tr>
<td>Hemisphaerodromia abellana</td>
<td>244</td>
</tr>
<tr>
<td>Hemisphaerodromia monodus</td>
<td>244, 262</td>
</tr>
</tbody>
</table>

Note: The text continues with additional species and page numbers.
Latreillopsis antennata 252, 268
Paromola bathyalis 253, 268
Lamoha inflata 251, 267
Lamocha longirostris 251, 267
Lamoha personata 252, 267
lator, Dromia .. 242
Lator, Dromia .. 242
tatrellisi, Dynomena 247
latreillei, Dynomene 247
latreillei, Dynomene 247
Latreillopsis antennata 252, 268
Latreillopsis daviei 252, 268
Latreillopsis gracilipes 252, 268
?Lauridromia indica 241
leblondi, Gymnomus 256, 270
levii, Homologenus 251, 267
levis, Raninoides 258
limatula, Ketaemia 255, 269
loevis, Ranina .. 258
loevis, Raninoides 258
longipes, Cryptodromia 239, 261
longirostris, Lamoha 251, 267
longispina, Takedromia 245, 263
Lysirude griffini 258
magnirostris, Gymnomus 256, 270
mahieuzeii, Dicranodromia 238, 239
Mahieuzeii, Dicranodromia 238, 239
marmorea, Dromia 242, 262
marquesas, Cryptodromia 240, 261
mclaughlinae, Cosmonotus 257, 271
Metadynomene crosnieri 248, 265
Mlaydromia colini 244, 262
Mlaydromia dubia 243, 262
Meloha alisae .. 253, 268
monodi, Dromia 242, 263
monodus, Cryptodromia 244, 262
monodus, Hemisphaerodromia 244, 262
muricata, Ranilia 259, 271
napai, Dicranodromia 238, 260
nitida, Cycloedrepe 254
nitidus, Cycloedrepe 254
nodipes, Dromia 242, 243
nodipes, Fuloodromia 242
nodoa, Dromia ... 242, 243, 262
Notosceles chimmonis 259, 271
occlusa, Homolomamia 251, 267
orstrom, Krangalangia 255, 269
ovata, Dicranodromia 238, 239
panamensis, Hypaconcha 245, 263
Paradynomene demon 248, 265
Paradynomene diablo 248, 265
Paradynomene rotunda 249, 265
Paradynomene tuberculata 249
Paromola bathyalis 253, 268
Paromola crosnieri 253, 268
personata, Hypophrys 252
personata, Lamoha 252, 267
pequignati, Dicranodromia 238, 239, 260
Phylloptymoliniidae 236, 257
Phylloptymolini crosnieri 257, 271
pitennis, Cryptodromia 240, 261
Platydromia depressa 244
Platydromia spongiosa 244, 263
plumosa, Stebbingodromia 243, 263
plumosa, ?Dromidiopsis 243
Podotremata .. 236, 237
Poupiniidiae ... 236, 253
Poupinia bursuta 253, 268
praeator, Dynomene 247, 248, 265
proxima, Ketaemia 255, 269
Ranilia muricata 259, 271
Ranilia stimpsoni 259
Ranina dorsipes .. 258
Ranina loevis .. 258
Raninidae .. 236, 257, 259
Raninoidea ... 257
Raninoides crosnieri 258, 271
Raninoides fosor 259
Raninoides laviis 258, 271
Raninoides laviis var. lamarkeli 259
Raninoides lamarkeli 259, 271
Raninoides levis 258
Raninoides laviis 258
Raninops stimpsoni 259
ranunculus, Homola 249, 266
richeri, Dromidiopsis 244, 262
richeri, Xinostoma 256, 270
rostratus, Homologenus 250
rostratus, Homoplaxis 250
rotunda, Epigodromia 244, 262
rotunda, Paradynomene 249, 265
rugosa, Epigodromia 244, 262
sakitt, Xinostoma 256, 270
Sphaerodromiinae 245
Sphaerodromia brizops 245, 264
Sphaerodromia ducoussii 246, 264
Sphaerodromia lamellata 246, 264
spinulata, Dicranodromia 239, 260
spongiosa, Platydromia 244, 263
Stebbingodromia plumosa 243, 263
stellatus, Elasopodus 257, 271
Sternodromia .. 242
Stimdromia foresti 241
stimponi, Ranilia .. 243, 263
stimponi, Raninops 259
Symethis corallica 259, 271
Takedromia longispina 245, 263
Thelexiope vigil .. 250
tirardi, Ihlopsi ... 252, 267
tuberculata, Paradynomene 249
Tymolus brucei ... 254, 269
Tymolus daviei ... 254, 270

ursula, Dynomene ... 248
ursula, Hirsutodynomene 248, 265

vigil, Homola .. 250
vigil, Thelexiope ... 250

wallis, Homologenus 251, 267

Xeinostomatinae ... 255
Xeinostoma inopinatum 255, 270
Xeinostoma richeri ... 256, 270
Xeinostoma sakaii ... 256, 270