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Models of character evolution underpin all phylogeny
estimations, thus model adequacy remains a crucial
issue for phylogenetics and its many applications.
Although progress has been made in selecting appro-
priate models for phylogeny estimation, there is still
concern about their purpose and proper use. How do
we interpret models in a phylogenetic context? What are
their effects on phylogeny estimation? How can we
improve confidence in the models that we choose? That
the phylogenetics community is asking such questions
denotes an important stage in the use of explicit models.
Here, we examine these and other common questions
and draw conclusions about how the community is
using and choosing models, and where this process will
take us next.

Models in phylogenetics
No phylogeny estimation (see Glossary) is assumption
free. To create an evolutionary tree of relationships,
one must make assumptions about the evolutionary
process that produced the observed data. Taken as a
whole, these assumptions form a ‘conceptual model’ of
character evolution with which estimates of evolutionary
relationship are made. The conceptual model could
include a mathematically explicit ‘formal model’ of char-
acter change, which is parameterized when applied to
nucleotide or amino acid sequence data. It is this formal
model that is referred to as the ‘model’ in phylogenetic
literature (as it is here).

Phylogenetics cannot escape the use of conceptual
models. Even those methods that do not formalize a model,
and thus claim to be model-free (e.g. parsimony), make
significant and sometimes incorrect assumptions about
character evolution when estimating the amount of change
between organisms [1–4]. The growth of formal model use
in phylogenetics, however, has created a noticeable level of
concern in the community. In particular, we think that
confusion about certain model qualities is contributing to
controversies about model ‘accuracy’, complexity and
development.

Several reviews give practical introductions to formal
models [5,6] and model selection methods [7,8] in molecu-
lar phylogenetics. Here, we focus instead on nine com-
monly voiced questions about the use of formal models
in phylogenetics. We seek to clarify issues surrounding
model interpretation, parameter choice and the need for
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adequate models when analyzing nucleotide sequence
data.
Question 1: What are models in phylogenetics?
Formal models serve the same function in phylogenetics
as they do in other fields of biology: they are tools that
facilitate estimation. Only in the simplest of systems can
a model be exact, and reality in most biological systems
is complex. Therefore, we seek models that are good
approximations of reality given that reality itself is
unknowable. Proper modeling tells us what inferences
the data support, rather than what full reality might be
[9,10].

In molecular phylogenetics, models are most commonly
used as estimators of evolutionary change at a given
nucleotide site through time. The primary aim ofmolecular
phylogenetic inference is to approximate the progression of
lineage divergences that produced a group of observed
sequences. In statistical terms, this makes the sample a
collection of homologous nucleotide sites at a given
moment (the aligned sequence matrix), and the population
being estimated is the previous condition of these sites
through time.

The sample (sequence matrix) can be used to formulate
a model of site evolution that represents, for example, an
expectation about how an A nucleotide might have
replaced a G nucleotide at the same sequence position in
the past. In probabilistic frameworks, such as maximum
likelihood or Bayesian inference, most expectations of
character evolution are formalized as parameters in a
largely explicit model of character change [2,5,11]. Each
estimable parameter is intended to represent a specific
feature of sequence evolution, such as an unequal rate of
evolution among sites (the a parameter) or an inordinate
proportion of transition substitutions (the k parameter).
When created, such parameters are usually carefully con-
sidered and have a logical biological justification for their
use in inferring change among sequence data. However, a
parameter responds to patterns in the data that might or
might not be the mutational process that we think we are
modeling, particularly when the distribution assumed by
the parameter is not a good match with that of the process
it is intended to represent.

Conceptual models that are in general use (including
the many forms of parsimony) share several assumptions
in common that are not given formal parameters. Some of
these assumptions are (i) i.i.d.: mutations are independent
and identically distributed; (ii) tree-like evolution: lineages
d. doi:10.1016/j.tree.2006.10.004
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Glossary

Akaike information criterion (AIC): an estimator of the information-theoretic

Kullback–Leibler distance between the true model and the estimated model. An

AIC value is derived from a maximum likelihood estimate that is penalized for

the number of estimable parameters in the model. Model selection by AIC can

include nested and non-nested model comparisons. The AIC framework also

enables the assessment of model selection uncertainty.

Bayes factors: a Bayesian analog to the likelihood ratio test. The model

likelihoods being compared, however, are derived from integration over all

possible parameter values, rather than from maximum likelihood estimates for

the model. Bayes factors, AIC and BIC can be used to select a model during a

Bayesian inference analysis instead of requiring a priori model selection.

Bayesian information criterion (BIC): similar to the AIC in that it compares

transformed likelihoods, but differs by penalizing sample size as well as

number of estimable parameters. The BIC can be an approximation of the

natural log of the Bayes factor, making it computationally more tractable than

Bayes factors for phylogenetic purposes. However, BIC is more likely to select

less complex models than those selected by Bayes factors [7].

Branch length estimations: the amount of estimated change in each lineage,

usually quantified as the number of substitutions per site. The degree to which

the set of branch lengths approximates the actual number of substitutions is

governed by the adequacy of the model.

Heterotachy: the property of change in evolutionary rate at a given sequence

position through time. If uncorrected, heterotachy can mislead phylogeny

estimation because of systematic error. Heterotachy is a growing concern in

phylogenetics [65,66].

Likelihood ratio test (LRT): a method that compares the maximum likelihood

estimates of two nested models given one data set. Significance is assessed by

an arbitrary attained significance value (usually p = 0.05). Technically, the test

requires that one of the models being compared is the true model given the

data.

Model averaging: an information-theoretic technique that makes formal

inferences based on a set of adequate models. It can be used when more

than one model is a reasonable approximator given the data, as judged by the

degree of difference in model AIC scores (‘Akaike weights’). Model averaging

incorporates uncertainty in model selection as well as uncertainty in parameter

estimates.

ModelTest: a widely used computer program that rapidly fits one of 56

candidate models to a nucleotide data set using hierarchical likelihood ratio

tests. ModelTest default settings will build a neighbor-joining Jukes-Cantor

tree on which maximized model likelihoods are estimated using the program

PAUP*. ModelTest also provides an AIC score for each model.

Nested models: models are considered nested when they are all special cases

of the most general model in the candidate set. In ModelTest, the general

model is GTR+I+G, which is the most parameter-rich model in the set of 56

compared. LRTs can only be applied to nested models, a requirement that

prevents, for example, the comparison of the GTR model with a covarion

model.

Phylogeny estimation: the various approaches for inferring evolutionary

relationships among living organisms (i.e. a phylogeny). All methods for

molecular data depend upon an implicit or explicit mathematical model

describing the evolution of aligned nucleotide or amino acid sequence

characters. A phylogenetic tree is an estimation of the true phylogeny of a

group of organisms.

Systematic error: in phylogenetics, error owing to the use of an inappropriate

model of character evolution. The error is accentuated by the addition of more

data, making it ‘systemic’. Both underfitting (not enough parameters) and

overfitting (too many parameters) of a model can create systematic error. An

inaccurate tree topology might be the most noticeable result, although any

parameter value could be erroneously estimated.

Box 1. Tradeoff between bias and variance in a model

A tradeoff between bias and variance is expected in phylogenetic

models (Figure I; adapted with permission from Ref. [9]). Theory

predicts that, as additional parameters are included in a model, the

chance of bias in the estimate will diminish, which is good.

Simultaneously, there will be an increase in variance associated

with the estimate, which is bad. Parameter-rich models must

estimate more parameters from the same amount of data, a

situation that can reduce the precision of parameter estimates. A

potential optimum is the point where a model can minimize both

bias and variance (the intersection of the two curves in Figure I).

The tradeoff concept is the primary justification for model

selection methods, all of which seek to trim away unimportant

parameters in an attempt to evade unnecessary variance. Reality

might prove more complicated, however, than Figure I suggests. We

think it unlikely, for example, that each parameter in a phylogenetic

model has equivalent potential to reduce bias or increase variance.

Also, the effect should vary between data sets, depending on the

degree of variability, the amount of data available and the

complexity of evolutionary processes that produced the sequences.

It is unknown where current phylogenetic models fall on this

graph. The assumption seems to be that we are drifting far to the

right with our general models (such as GTR+I+G), but this has been

difficult to demonstrate. A general resistance among phylogeneti-

cists to develop more complex models might be largely based on

this assumption.

Figure I.
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arise in a divergent manner without reticulation;
(iii) stationarity: mutational processes are consistent
through time; (iv) reversibility: mutations can revert to
a previous state; and (v) Markov process: mutation events
are not influenced by a previousmutation at that site. Such
general assumptions are often violated in reality; for exam-
ple, prokaryote groups frequently share genes among
lineages via lateral gene transfer and, thus, do not evolve
in a tree-like fashion.

For aphylogeny estimate tobeaccurate, the assumptions
of the formal model and of the conceptual model must
adequately represent the true evolutionary process that
produced the observed data.
www.sciencedirect.com
Question 2: Must a model be ‘exact’ or merely ‘good
enough’?
Many researchers wonder how strictly a model must fit
detectable patterns in a sample. It is widely (but incor-
rectly) assumed that the more closely a model fits a
sequence alignment, the more accurate the phylogenetic
inference. One can improve the fit of a model to the data by
adding more parameters, which is why likelihood values
for a data set improve with the increasing complexity of the
model.

Better fit, however, does not necessarily improve
accuracy of phylogeny estimation [12–14]. Why is this?
One answer is that inference of the nature of sequence
change is made from the sample at hand, a property that
enforces certain limitations on model composition. There
is a cost to improving model accuracy by parameter addi-
tion: the more parameters that must be estimated from a
finite data set, the higher the overall variance associated
with those parameters [15–17] (Box 1). Improvement
of model fit to the data will result in a more accurate



Box 2. When models matter

The importance of model fit can be viewed as a continuum,

depending on the phylogenetic technique or application being used

and the questions being investigated (Figure I). For studies that

focus only on relationship among organisms, the primary require-

ment is an accurate topology, rather than an accurate estimate of

how much change has occurred on the tree. In certain cases,

topology might not change over a wide range of suitable models,

suggesting that topology itself is (in these cases) robust to mildly

inadequate models [31,53]. This is particularly likely in data sets that

show little observable sequence variation [54,55]. For cases in which

resolution of deep nodes in a tree is difficult owing to saturation,

lack of character change, or sampling issues, model choice can have

a decisive role in phylogeny reconstruction or outgroup rooting,

although not necessarily for the better [26,56,57].

For most other uses of phylogenies, branch lengths can have a

crucial role. When the aim is to estimate divergence times among

lineages on a tree, accurate branch-length estimates are more

important [58,59], although a rate-smoothing algorithm [60] can

ameliorate this effect to some degree.

Testing an alternative phylogenetic hypothesis (e.g. Kishino-

Hasegawa, Shimodaira-Hasegawa and Incongruence Length Differ-

ence tests) also requires adequate models. To investigate significant

differences between competing topologies (as is commonly done in

studies of coevolution [61] or horizontal gene transfer), conclusions

are usually based on significant likelihood differences or compar-

ison of support values among incongruent topologies. Both like-

lihood comparisons and bootstrap values are functions of estimated

branch lengths and ultimately, therefore, of the choice of models

[12,46,62].

Given that the interpretation of mutational history at a specific site

in a nucleotide sequence can change depending on assumptions

about evolutionary processes [63], model adequacy is also central to

studies of molecular evolution that use phylogenetic relationship

among sequences (e.g. testing for the presence of a molecular clock,

measuring modes of molecular evolution, or detecting positive or

purifying selection).

Figure I.
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explanation of the sample (in this case, the sequence
alignment) but a less precise estimate of the population
(the condition of those sites through time). This means that
any fine-scale parameterization of the variation present in
a sequence alignment will make estimation of evolutionary
history more difficult. Hence, a model must be ‘good’, but
not ‘exact’.

Because models should be good value estimators of all
parameters assessed for a data set (of which the tree
topology is only one), reduction of parameters in a model
must be donewith care. A focus onmodels that only recover
accurate topologies could yield models that prove poor
estimators of other parameter values, such as transition:
transversion ratios or the degree of positional rate hetero-
geneity.

Question 3: What phylogenetic applications rely on
best-fit models?
Scientific conclusions that are based on phylogeny
estimations will always depend on the assumptions of
the formal and conceptual models. Therefore, it is worth
considering what phylogenetic techniques or applications
require a model that adequately covers the mutational
processes generating the data.

Varying the assumptions about the manner of evolution
at a nucleotide site can result in different branch length
estimations, which can then alter our inference about the
amount of mutational change that has occurred between
two sequences. Any application or technique that relies on
a correct assessment of the amount of evolutionary change
among lineages will therefore need adequate models.
When the aim is only to recover an accurate depiction of
relationships (a correct topology), more flexibility in model
composition can be allowed in some cases. So, although one
can view the importance of model fit as a continuum, it is a
continuum that is heavily skewed toward proper fit (Box 2).

Question 4: What happens when a model is ‘wrong’?
Models can be ‘wrong’ in twoways, by either underfitting or
overfitting the sample. When a model is a poor approxima-
tion of reality (‘underfit’ owing to absence of key para-
meters), the consequence can be systematic error, a
condition in which a bias strongly influences the analysis,
resulting in an inaccurate, but sometimes well supported,
phylogeny estimation.

Long branch attraction is occasionally due to model
underfitting [18–21], particularly when inadequate taxon
sampling is coupled with faster rates of substitution in one
or more lineages, a situation that is more likely to mislead
an analysis when the model does not include a correction
for positional rate heterogeneity [22–24]. Controversy over
the primary split in the flowering plant lineage, for
instance, has been identified as a long branch attraction
issue on account of problems in sampling and model mis-
specification [25,26]. Another well known form of systema-
tic error is composition bias, in which separate lineages
experience a shift in relative base frequencies so that AT-
rich lineages, for example, are mistakenly positioned
together on a topology [27–29]. A case was recently
reported [30] of compositional bias misleading a genome-
scale minimum evolution analysis of yeast species, an
www.sciencedirect.com
example made evenmore interesting by the high bootstrap
support on the misleading topology. These studies and
others [13,31,32] have now demonstrated that underfitting
a model can adversely affect phylogenetic accuracy.

By contrast, a model might contain too many
non-essential parameters that improve model fit but result
in poor estimation of the parameters. Such overfitting of
the model could, in principle, inflate the estimated degree
of change for each lineage or invoke a set of shared char-
acters for a clade that are not observable in a direct
comparison of sequences. Suspected cases of overfitting
empirical data, however, are rare [13,20,33].

Both overfitting and underfitting of models can produce
topological error and poor branch length estimations.
Because parameter values are usually estimated during
analysis, the primary issue then is which parameters



Box 3. Diversity of model selection methods

Although likelihood ratio tests are the most popular means of fitting

a phylogenetic model to data, a variety of methods are currently in

use.

Likelihood ratio test

Likelihood ratio tests (LRTs) compare nested candidate models in a

pairwise fashion. Maximized likelihood estimates are obtained for

each model, given the data and a ‘reasonable’ topology (often a

neighbor-joining tree, as in ModelTest). Hypothesis testing takes the

form of an alternative model being compared to a null model, and a

p value is used to determine significance. Many have noted the

probable inadequacy of the test for model comparison in phyloge-

netics (e.g. Refs [7,16]).

Bayes factors

Bayes factors are the Bayesian analog of the LRT; instead of using

the maximized likelihood estimate for each model, the likelihoods

being compared are derived from integrating over all possible

parameter values within a Bayesian inference framework that

includes prior probabilities (e.g. Refs [52,64]). Similar to BIC, Bayes

factors can be used to select a model during Bayesian analysis,

thereby combining the steps of model selection and phylogenetic

inference.

Akaike information criterion

An information-theoretic approach, Akaike information criterion

(AIC) is similar to LRT in that several candidate models are

compared in the context of data and a reasonable topology.

Maximized likelihoods for models, however, are penalized for the

number of estimable parameters, effectively converting likelihoods

into an estimate of informational distance. There is no hypothesis

testing between models, and hence no p value of significance.

Informed decisions about model adequacy are properly made by

assessing the relative difference in the values of candidate models,

and not (as is commonly done) by choosing the model with the

highest ranking AIC score. More than one model can have similar

scores, in which case each model should serve equally well as an

approximator.

Bayesian information criterion

The Bayesian Information criterion (BIC) differs from AIC in that it

accounts for sample size as well as the number of estimable

parameters. By doing so, it approximates the log marginal

likelihood of a model, assuming that priors are flat across models

and parameters. The difference between two BIC scores is then a

relatively quick estimate of the Bayes factor.

Decision theory
A relatively new approach involves decision theory [8,50,51]. The

focus is on phylogenetic performance: in one method, model BICs

are penalized relative to their degree of dissimilarity in branch

length estimation. Hence, it is the ability of the model to estimate

branch lengths that determines its quality, and not the overall fit of

the model to the data.
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should be included for estimation when given a particular
data set, a process referred to as model selection.

Question 5: How are models selected for nucleotide
data?
Most model selection methods are statistical in nature,
although a prominent exception is a priori model choice. A
conceptual model is commonly selected for philosophical or
operational reasons (e.g. the view that probability theory
applies to sequence data, or that computational efficiency
favors distance methods). By contrast, the a priori accep-
tance of a formal mathematical model is relatively rare,
although some authors are now proposing the general use
of the most parameter-rich model available when operat-
ing in the Bayesian framework [34].

Statistical methods of model selection are currently
dominatingmodel choice in phylogenetics, andmost belong
to three categories: frequentist (e.g. likelihood ratio tests);
information-theoretic (e.g. Akaike Information Criterion);
and performance-based (e.g. decision theory). There are
recent in-depth reviews available that describe the details
of each approach [7,8]; we present a descriptive overview of
the methods in Box 3.

When a model is fit to an aligned sequence matrix, the
choice of models relies on detectable patterns in the dis-
tribution of mutations. The process can therefore bemisled
when one attempts to fit a model to nucleotide data that
show little or no sequence variation.

Question 6: What models are most frequently chosen
for sequence data?
Given that nucleotide sequences are subject to an array of
selective forces and mutational phenomena, one might
reasonably expect that model choice would vary among
sequence regions and data sets. Curiously, when using
hierarchical likelihood ratio tests (hLRT), it does not.
We surveyed 208 published data sets that used ModelTest
[35] to select among 56 models. Our results show that only
five relatively complex models make up nearly 80% of the
observations, independent of genome, organism or region
sequenced (Box 4; Online Supplementary Material).

The predilection of ModelTest to chose parameter-rich
models for most data sets could reflect at least three
probable explanations: (i) DNA sequences generally
require parameter-rich models to accommodate features
such as base composition, positional rate heterogeneity,
unequal substitution class frequencies and perhaps unrec-
ognized mutation processes; (ii) hLRTs are biased toward
parameter-rich models, perhaps because of data violations
of the i.i.d. hypothesis or the hierarchical fashion in which
numerous models are being compared; and (iii) parameter-
rich model selection by hLRTs is due to a combination of
both complex molecular processes underlying the data and
model selection bias. These possibilities suggest multiple
lines of research for advances in model use for phyloge-
netics.

In the first case, the frequent occurrence across all
categories of data of GTR+I+G (the general time reversible
model with corrections for invariant characters and
gamma-distributed rate heterogeneity) could suggest that
even the most complex models in general use are not
www.sciencedirect.com
complex enough to capture all significant patterns in most
data sets, a conclusion reached by other researchers
[13,16,34]. If so, one path forward is to create and test
novel parameters.

Alternatively, the observed parameter richness of
chosen models might indicate a bias in the model selection
process. For example, the relatively redundant inclusion of
the invariant parameter (I) in the general model
(GTR+I+G) is four times more common than the similar
(and next most complex) GTR+G model in our survey.
Although G and I are discrete parameters, they are
strongly correlated [24,36] and G can accommodate for
the absence of I in simulation studies (e.g. [31]). It seems



Box 4. What is ModelTest telling us to use?

ModelTest is currently the most widely used program for fitting

models to phylogenetic data using hierarchical likelihood ratio tests.

We surveyed the first 137 phylogenetic publications from the first

quarter of 2004 that cite ModelTest [35] in Thomson Scientific’s Web

of Science Citation Database (http://www.isiwebofknowledge.com/)

and have an unambiguous description of how the model was selected

(see Online Supplementary Material).

The 137 publications came from 43 scientific journals and yielded

208 data sets of aligned nucleotide sequences. The data sets are from

nuclear, chloroplast and mitochondrial genomes, or are combined

data sets from multiple genomes (Figure Ia). Sequence regions

included rDNA, protein-encoding genes, introns and intergenic

spacers, and no single region was represented in more than 11% of

the data sets. Organismal diversity in the sample appears to be typical

of the level of phylogenetic work being published for each taxonomic

group, with the possible exception of prokaryotes, which are probably

underrepresented. As might be expected, there is a high frequency of

vertebrate studies, followed by arthropods and plants (Figure Ib).

Twenty of the 56 models examined by ModelTest are represented in

our sample of phylogenetic literature (Figure Ic; model abbreviations

follow Ref. [35]). Most of these models can be considered parameter

rich, with 133 of 208 data sets (63.94%) requiring the three most

complicated candidate models: GTR+I+G, GTR+G and TrN+I+G (ten,

nine, and seven estimable parameters, respectively). Together with

HKY+G and HKY+I+G (five and six estimable parameters, respectively),

these five models make up nearly 80% of the samples in our survey.

The high frequency of GTR+I+G selection is consistent across all

taxonomic groups with the exception of viruses, for which the model

appears only once in ten instances. Not measured was the degree of

similarity between sequences in each data set; if generally low, we

could expect a skew of observations toward simpler models (i.e. to

the left in Figure Ic).

Figure I.
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odd to us that the inclusion of I is essential in these data
sets; perhaps its prevalence is an example of a model
selection bias in which multiple hierarchical comparisons
among too many models (56 in this case) leads to the
incorporation of extra, largely spurious parameters.
Another explanation might be that violation of the
character independence assumption is making hLRT-
based selection for model fit problematic. In our opinion,
resolving the question of potential bias in hLRT-based
model selection would be of general interest and is worth
further research.

Question 7: How can model selection methods be
improved?
Threemain problems of valid inference usingmathematical
models are: (i) selecting themodel; (ii) estimating themodel
parameters; and (iii) determining the precision of the esti-
mate [9].Phylogeneticistshavemadesignificantprogresson
the first two issues but have not yet widely used amethod to
assess precision of themodel estimate. In our view, this is an
important exception in an otherwise rigorous system and
should be rectified (see also Ref. [7]).

‘Precision of the estimate’ should include precision in
model selection as well as in parameter estimates, only one
of which is the tree topology. Is the best-fit model the only
adequate model for a given data set, or could other models
also be reasonable choices? Can this uncertainty about the
model be included in confidence measures of the phylogeny
estimation? Underutilized tools exist for assessing model
uncertainty, one of which is a goodness-of-fit test, which
involves the simulation-based method of parametric boot-
strapping [6,37]. In the Bayesian framework, a comparable
approach simulates new data under the conditions indi-
cated by the marginal posterior distributions obtained
from the actual data [38,39].

An information-theoretic approach to model choice lar-
gely solves the problem of assessing the precision of the
estimate. In the case of many models providing nearly
equivalent information about the data, model averaging
is an appropriate solution [7,9,40]. The technique is likely
to increase the variance of the subsequent estimates
because uncertainty about the choice of models is added
to the uncertainty of the phylogeny estimation. This is
appropriate when one is unsure of the correct model for the
data at hand. Model averaging could have an important
role in cases where different models are adequately infor-
mative yet produce alternate topologies.

To help limit bias in the model selection process that
could be due to multiple model comparisons, we see a
need for a fundamental shift in terms of the number of
models being compared [9]. For example, the candidate
pool for ModelTest could be limited to between five and
ten well chosen models, instead of the 56 special cases of
the general time reversible model with I and G, which are
themselves subjectively chosen from among the 203 pos-
sible models of GTR alone. Limiting the number of
candidate models would not alter the performance mea-
sure of either the LRT, AIC or BIC process, but the choice
of models for comparison could vary depending on the
data set, particularly when little sequence variation is
present.
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Question 8: Are all parameters equally important?
What parameters are strong performers in our current
models? Our survey of model choice across organisms,
genomes and sequence regions (Box 4) suggests that a
few parameters are of consequence for most nucleic acid
sequence comparisons. Primary among these is a (the
shape parameter for a gamma distribution of positional
rate heterogeneity), which appears in 98% of the models
selected for in our 208 data sets. Correction for base
frequency inequalities (uf in ModelTest) is almost as com-
mon, appearing in 95% of selected models. Nearly 80% of
selectedmodels required a, uf and a correction for different
substitution frequencies (special cases of the GTR model).

Our observations are in accord with several empirical
and simulation studies [13,24,31–33,41]. These para-
meters are not present in most forms of parsimony or in
simpler distance and likelihood models, such as Jukes-
Cantor or Kimura-2-parameter, which are still widely used
as a priori models in molecular phylogenetics.

Question 9: Will phylogenomics eliminate the need for
model selection?
If small data sets can create excessive levels of variance
when estimating many parameters, would it be possible to
increase the amount of data so that parameter-rich models
can be used? The assembly of increasingly massive data
sets might partly reflect this notion. The ‘phylogenomics’
approach, however, has not allowed researchers to side-
step the model selection process. Although gigantic data
sets are likely to overcome statistical issues related to
small sample size (sampling error), they continue to be
susceptible to systematic error from inadequate models
[42–44].

In addition, bootstrap values should be high in phylo-
genomic studies because sampling error has largely been
eliminated. This can be problematic in the known cases
where an alternative model produces a different topology
that also exhibits high bootstrap values [26,27,45]. The
important lesson from such findings is that genome-scale
analyses are not impervious to systematic error owing to
poor model selection, even when high bootstrap values are
observed. Confidence in the topology should come from
additional sources to the bootstrap, such as corroboration,
sensitivity analysis and quality estimates of model ade-
quacy [40,43,44].

The next step: new models, new methods
The importance of models and model selection in modern
phylogenetics continues to motivate research on their
proper use and improvement. We see three categories of
model study that are, or shortly will be, dominating
research of model application in phylogenetics.

Novel parameters

A model chosen in any analysis is only the best fit of those
models that were tested. If a model exists, or could exist,
that performs better as an approximator for a data set,
then it should be developed and included in the model-
testing process. This could include models that are more
parameter rich than the general GTR+I+G model. There
are few suspected cases where possible overfitting has been
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detrimental to phylogeny estimation, and thus we
advocate a cautious exploration of novel parameters and
model applications. Mutational phenomena that are not
adequately covered in standard models include heterota-
chy, composition bias and violations of the i.i.d. hypothesis.
If a distribution can be identified for each of these patterns,
parameters could be developed to correct for bias that they
might impart in phylogenetic analyses.

Relaxing current parameters

An alternative to novel parameter development is to
increase the complexity of the model by relaxing certain
parameter constraints. Partitioned models, for example,
enable improved fit of the parameters to subsets of the data
that evolve under different selective constraints [46,47].
Partitioning can increase the fit and quality of parameter
estimation in a Bayesian framework [33] and has potential
for widespread application in phylogenomics [43]. Mixture
models, which permit a substitution rate matrix to vary
among sites, offer an additional improvement in model fit
by compensating for heterogeneity of substitution pro-
cesses [48]. Mixture models can be implemented so that
rate and pattern heterogeneity classes are estimated dur-
ing analysis, an idea that lends itself readily to Bayesian
inference methods, which are less sensitive to parameter
richness [49]. It is not yet known whether partitioned
models and mixture models suffer generally from
increased levels of variance in parameter estimation.

Model selection

Model selection methods are rapidly evolving beyond
hierarchical likelihood ratio tests. Bayes factors have a
prominent role in the new approaches, which include
decision theory methods [50,51] and model selection
during Bayesian analysis [33,52]. Dynamical (instead of
hierarchical) likelihood ratio tests using a reduce number
of candidate models should also be considered, which
would require a simple change to the ModelTest frame-
work, or independent calculation using PAUP* or other
phylogenetics programs.

There is already a push to better incorporate
information-theoretic approaches that facilitate model
averaging in cases where more than one model (nested
or otherwise) contains similar approximating power [7,40].
Model averaging should better accommodate the total
variance of a phylogeny estimation, perhaps tempering
the current enthusiasm for trees that have high bootstrap
support values.

Summary
All phylogeny estimation requires that assumptions be
made about evolutionary processes. These assumptions
are the conceptual model (either formal or implicit) that is
used to estimate parameter values, such as branch lengths
and topology, in a phylogenetic analysis. Althoughmodels
are imperfect representations of reality, they need only be
good approximators. Because many scientific conclusions
are based on phylogeny estimations, and given that we
have no certain knowledge of the true evolutionary relation-
ships between organisms, confidence in the performance
of a model is necessarily a function of confidence in the
www.sciencedirect.com
suitability of the model for the data at hand. Researchers
should therefore seek the best possible model in most
phylogenetic applications, a process that is still in develop-
ment, particularly in the assessment of model selection
uncertainty. Nucleotide data are generally complex, and
parameter-rich models are most frequently chosen for com-
parative sequence analysis, suggesting that further model
development and methods of application are warranted.
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