REVISION OF JAPANESE CALLIANASSIDS BASED ON THE VARIATIONS OF LARGER CHELIPED IN CALLIANASSA PETALURA STIMPSON AND C. JAPONICA ORTMANN (DECAPODA: ANOMURA)

Katsushi SAKAI

Seika Women's Junior College, Fukuoka

With Plates IX-XV and 8 Text-figures

Contents

I.	Introduction	209
II.	Material and method	211
	Material	
	A. Callianassa japonica	211
	B. Callianassa petalura	211
	Method	211
III.	Variations in the morphology of larger cheliped	
	A. Variations in C. japonica	
	1. Variation of the cutting edge of dactylus	212
	2. Variation of palm	214
	3. Combinations between the variations of dactylus and palm	216
	B. Variations in C. petalura	
	1. Variation of the cutting edge of dactylus	221
	2. Variation of palm	222
	3. Variation of the cutting edge of fixed finger	224
	4. Combinations among the variations of dactylus, palm, and fixed finger	224
IV.	Revision of Japanese Callianassids	227
V.	Conclusions	231
VI.	Specific descriptions proposed	
	A. Callianassa japonica Ortmann	232
	B. Callianassa petalura STIMPSON	233
Refe	rences	233

I. Introduction

Some species of the genus Callianassa are reported from Japan as follows.

- 1. C. petalura Stimpson, 1860
- 2. C. subterranea var. japonica ORTMANN, 1891
- 3. C. harmandi BOUVIER, 1901

Publ. Seto Mar. Biol. Lab., XVII (4), 209-252, 1969. (Article 12)

- 4. C. californiensis var. japonica BOUVIER, 1901
- 5. C. gigas var. japonica MAKAROV, 1935
- 6. C. gigas var. eoa MAKAROV, 1938
- 7. C. californiensis var. bouvieri MAKAROV, 1938

The features of these species have often been described, however, their classification is not always definite. DE MAN (1928a, p. 15) remarked upon *C. harmandi* as "The nearest related species is no doubt *Call. (Trypaea) japonica* (ORTM.),..." He stated that these two species resemble each other closely in the smaller cheliped, the first and second antennae, the abdomen and the caudal fan, but differ in the morphology of rostrum and cheliped and also slightly in eyestalks. He (1928a, p. 18) wrote further about *C. californiensis* var. *japonica* that "From a careful examination of this specimen I draw the conclusion that it is *identical* with *Call. (Trypaea) japonica* (ORTM.). The type, 36 mm. long, indeed fully agrees, even in minute particulars, with the *equally long* male of *C. japonica, except only the chelipeds of the 1st pair.*" MAKAROV (1938, p. 73) described on *C. californiensis* var. *japonica*, as "If also in the future only males of this species are captured, it will be obvious that they belong to *C. japonica,*"

Regarding C. petalura STIMPSON, BORRADAILE (1903) and DE MAN (1928b) cast a great doubt on the validity of this species. Balss (1914) concluded that C. petalura is synonymous with C. japonica. YOKOYA (1930, 1939) applied, without any definition, two different names C. japonica and C. petalura to his specimens. On the other hand, MAKAROV (1935) reported C. gigas var. japonica as a new species from the Sea of Japan, without any reference to STIMPSON's species.

In this report, the Japanese Callianassid species are reviewed on the specimens^{*} gathered from around the Japanese Islands, and after all it is concluded that they are classified into two species, *C. japonica* ORTMANN, 1891 and *C. petalura* STIMPSON, 1860. As noted already the morphology of larger cheliped has been regarded as the most important specific criterion separating closely allied Callianassids from one another. For this reason, in the course of examining the gathered specimens, the morphological variations of larger cheliped are arrayed and compared one another carefully to find if any range of the series of variations can be defined distinctly referring to the species already reported.

I wish to express here my hearty gratitude to Dr. S. MIYAKE of Kyush University for allowing me to avail his specimens, to Drs. John S. GARTH and Janet HAIG of Allan Hancock Foundation, University of Southern California, who kindly lent me their specimens of *C. californiensis* DANA for comparison with Japanese specimens, and also to Dr. T. TOKIOKA of Kyoto University, who has given me the chance to publish this paper.

210

^{*} All the specimens dealt with in this paper are deposited at Zoological Laboratory, Kyushu University, Fukuoka,

II. Material and method

Material: A. Callianassa japonica ORTMANN, 1891

The material defined as *C. japonica* contains 241 specimens, 158 males and 83 females, inclusive of 26 ovigerous ones. Their data including localities, dates and collectors' names are shown in Table 1, and their dimensions are given in Table 3.

The present specimens were gathered from around Japan, from Kyushu to Hokkaido. Among them, the specimens from Higashihama Beach in Kyushu Island are unique in being lesser in body size than those from any other locality. Of 110 males of the body length 15.0–44.0 mm, only two, Cat. Nos. 9196 (44.0 mm) and 9159 (41.0 mm), are larger than 40.0 mm. The females are 41, inclusive of 18 ovigerous ones, and from 15.0 to 32.0 mm in body length, except one larger specimen, Cat. No. 9118, which is 38.0 mm in body length. The smallest ovigerous specimen is 25.0 mm (Cat. Nos. 9097, 9141 and 9180). The exact condition which causes the undersized state of inhabitants on Higashihama Beach is unknown. It seems, however, very probable that the population density on Higashihama Beach is responsible for the phenomenon. There, the inhabitants are crowded so densely that even a scoopful of sand will contain two or three of them; while in the other localities it is hardly possible to collect so many specimens as on Higashihama Beach.

A lot of specimens of the standard size were collected on Momoji Beach in Hakata Bay and at the estuary of the Muromi River boardering the west of Momoji Beach. This material contains 36 specimens, 22 males and 14 females inclusive of 3 ovigerous specimens, which are mostly 35.0–58.0 mm in body length.

B. Callianassa petalura STIMPSON, 1860

In all 59 males and 57 females inclusive of 23 ovigerous ones were examined; their data are shown in Tables 2 and 4.

Besides the specimens from various places of Japan, two males and two females inclusive of one ovigerous one from the type locality, Shimoda (Cat. Nos. 3001–3004), were examined for a comparison with STIMPSON's description. The collection from Tsuyazaki Beach, Fukuoka, is remarkable in its size; 40 males (10.5–46.0 mm) and 37 females (10.0–40.0 mm) inclusive of 12 ovigerous ones (23.0–35.0 mm) are included. Tsuyazaki Beach is facing the open sea, consists of very fine sand, and is unsuitable for burrowing. Such circumstances are quite similar to those in Shimoda.

Method: The measurements were made in the following methods.

Measurement of the body length was made for the stretch from the tip of rostrum to the posterior margin of telson. A piece of thread was fitted along the center line of the body and marked for the above-mentioned stretch. Then the span between the marks was applied to a millimeter steel scale.

Measurements of the larger cheliped (Fig. 1) were made as follows, and the treat-

ments of respective parts (2-6) were done under the stereo microscope.

1. Total length (TL). The cheliped was extended, and the maximum length between the ischium and chela was measured.

2. Length of the merus (ML). The distance between the proximal and distal articulations was measured.

3. Length of the carpus (CL). The distance between the proximal articulation to the merus and the distal swelling above the articulation to the palm was measured.

Fig. 1. Diagram of larger cheliped of Callianassa,

TL, total length of larger cheliped. ML, merus length. CL, carpus length. CH, carpus height. PL, palm length. DL, dactylus length.

4. Height of the carpus (CH). The maximum height was measured.

5. Length of the palm (PL). The distance between the proximal articulation to the carpus and the distal swelling just above the articulation to the dactylus was measured.

6. Length of the dactylus (DL). The distance between the articulation to the palm and the tip was measured.

III. Variation in the morphology of larger cheliped

To see the variations in the larger cheliped, the following parts of the larger cheliped were examined closely: the cutting edge of dactylus, the distal margin of palm and its connection with the fixed finger, and the cutting edge of fixed finger.

A. Variations in C. Japonica Ortmann:

1. Variation of the cutting edge of dactylus. There are three groups (A-C) and fourteen types (D1-D14) of variations (Fig. 2).

A group. The first A group containing D1 and D2 types is characterized by the cutting edge which is rather straight and smooth to a little serrulate and the tip slightly bending down.

D1. The cutting edge is rather straight on the whole.

D2. The cutting edge swells slightly and gently towards the proximal portion.

B group. This group contains six types D3, D4, D4', D5, D6 and D7 which are respectively defined on the successive grades of formation of a squarish swelling at the

proximal part of cutting edge, and of development of serrulation on the whole edge.

- D3. The cutting edge curves down gently toward the tip.
- D4. The distal bending distinct, the interior angle about 90° or more.

Fig. 2. Diagrams showing the variations of dactylus of the larger cheliped in *Callianassa japonica*. Fourteen types (D1-D14) are shown in three groups (A-C).

D4'. The distal bending more pronounced, the interior angle smaller than 90°.

D5. The cutting edge becomes undulated, the tip bends down strongly.

D6. The cutting edge becomes concave in the distal half. The tip bends down strongly to form inside another smaller concavity.

K. Sakai

D7. Now, there are two concavities on the cutting edge. The broader and deeper proximal concavity is situated at a little distance from the proximal swelling. The tip curves down markedly.

C group. The third group is constituted of seven types D8, D9, D10, D11, D12, D13 and D14, in which the cutting edge is provided proximally with a broad truncate tooth and distally with two concavities of variable forms, but D8.

D8. The dactylus is rather short and stout. The cutting edge is a little swollen out proximally, but in the distal half it becomes gradually narrowed toward the tip and is furnished with a row of irregular serration.

D9. The cutting edge bears in the proximal half a broad truncate tooth which is followed distally by a small but deep concavity. The tip curves down abruptly forming inside another broad but shallow concavity.

D10. The proximal truncate tooth looks like that in D9, but in the distal half two concavities, especially the distal concavity, become deeper.

D11. The truncate tooth as in D10. Two concavities in the distal half are now almost the same in size and shape.

D12. The truncate tooth is not so broad as in D9, D10 and D11. Contrary to the state in D9 and D10, the proximal concavity becomes broader than the distal one.

D13. This type roughly resembles D12, but the proximal concavity is now as broad as the truncate tooth.

D14. The truncate tooth is more narrowed. The proximal concavity is extremely large, while the distal concavity is much smaller.

In the material from Higashihama Beach, C group comprises 55 males but no female; B group comprises 44 males and 6 females, and A group consists of 9 males and 33 females. In the material from the estuary of the Muromi River and Momoji Beach, C group comprises only 12 males, B group 7 males and 12 females, and A group only one female.

Throughout the whole samples, C group is limited to the male, but A and B groups comprise each both males and females. Males of C and B groups were collected together at Kanazawa-hakkei, the estuaries of the Ohta and Muromi Rivers, and on Higashihama Beach.

2. Variation of palm. The distal margin of the palm and its connection with the fixed finger are variable, too. Variations are, however, grouped into seven major types (Fig. 3).

P1. The distal margin of palm is smooth, evenly connected with the fixed finger.

P2. The distal margin bears a small outgrowth just near the lower corner.

a. The outgrowth is small and simple, with the tip round or pointed.

b. The outgrowth is distinct and divided into two or more at the tip.

P3. The outgrowth on the distal margin is bent down to cover slightly the proximal part of the fixed finger.

a. The outgrowth is simple.

b. The outgrowth divided at the tip.

Fig. 3. Diagrams showing the variations of the distal part of palm of the larger cheliped in *Callianassa japonica*. Seven types (P1-P7) are shown.

P4. The distal margin of palm is separated by a broad notch from the fixed finger. The notch is not so deep as to reach the perpendicular line drawn to the lower margin of palm from the articulation to the dactylus.

- a. The distal margin is evenly connected with the broad notch.
- b. The distal margin bears an outgrowth just before it reaches the notch,

the outgrowth is dentiform or subacute.

P5. The broad notch is very prominent and very deep to reach beyond the perpendicular line mentioned above.

a. The distal margin is smooth.

b. The distal margin bears an outgrowth which is dentiform or subacute.

c. The outgrowth is dentiform and denticulated at the tip.

P6. The distal margin forms a prominent denticulate lobe near the lower corner, and there is a distinct notch between this lobe and the fixed finger. The notch is not so deep as to reach beyond the perpendicular line mentioned above for P4.

a. The lobe on the distal margin is small and seldom extends downward over the proximal part of the fixed finger, and the notch is roughly triangular in shape.

b. The notch broadened and with a round bottom.

c. The lower side of the lobe is embraced basally by a hooked slit formed at the bottom of the notch.

P7. The denticulated lobe on the distal margin is very broad. The notch is enlarged, too and becomes much deeper to extend beyond the perpendicular line.

a. The notch is triangular in form.

b. The notch is a little enlarged to have a round bottom.

c. The notch bottom forms a hooked slit as in P6-c to embrace basally the lower side of the lobe.

Of these palm forms, P4, P5, P6 and P7 are found in the male. On the other hand, all the females are closely related to P1, P2 and P3. As to the relation of the palm shapes to the dactylus forms, it is shown that P4 and P5 are strongly combined with C group of the dactylus, and P6 and P7 with B group.

3. Combinations between the variations of dactylus and palm. Combinations of the palm forms with the dactylus shapes are checked on respective specimens as follows. For the combinations of the dactylus types with those of palm see Table 5.

1. Specimens with P1 (Fig. 4).

Combination	Individual	Locality
D2-P1	1	Najima 1 ind.
Female:		
D1-P1	2	Higashihama 2 ind.
D2-P1	2	Higashihama 1, Najima 1
D3-P1	1	Muromi 1

Revision of Japanese Callianassids

Fig. 4. Distal part of the larger cheliped of *Callianassa japonica*. a: A female from Higashihama Beach, Amakusa I., Cat. No. 9143, showing the form D1-P1. b: A female from Higashihama Beach, Cat. No. 9134, D2-P2a. c: A male from Higashihama Beach, Cat. No. 9106, D2-P6a. d: A male from Ujina, Hiroshima, Cat. No. 7010, D3-P3b. e: A male from the estuary of the Muromi River, Hakata Bay, Cat. No. 9046, D3-P3b. f: A male from the estuary of the Muromi River, Cat. No. 9051, D3-P3b. g: A female from the estuary of the Muromi River, Cat. No. 9051, D3-P3b. g: A female from the estuary of the Muromi River, Cat. No. 9052, D3-P3b. h: A male from Kanazawa-hakkei, Tokyo Bay, Cat. No. 3002, D4-P6a. i: A male from the estuary of the Ohta River, Hiroshima, Cat. No. 7025, D4-P6a. j: A male from Higashihama Beach, Cat. No. 9062, D4'-P7c. k: A male from Higashihama Beach, Cat. No. 9109, D4'-P7c. 1: A male from the estuary of the Muromi River, Cat. No. 9041, D5-P6a. m: A male from Higashihama Beach, Cat. No. 9065, D5-P7b. n: A male from Higashihama Beach, Cat. No. 9105, D5-P7b. o: A male from the estuary of the Ohta River, Cat. No. 7022, D5-P7c. p: A male from the estuary of the Muromi River, Cat. No. 9094, D6-P7b.

217

K. Sakai

Most of the specimens with P1 are smaller in body size, except for a female (Cat. No. 9043) from Muromi, Hakata Bay, which is 45.0 mm.

2.	Specimens	with	P2	(Pl.	IX	and	Fig.	4).
----	-----------	------	----	------	----	-----	------	-----

Male:		
D2-P2a	2	Higashihama 1, Ujina 1
D2–P2b	1	Higashihama 1
D3–P2a	4	Muromi 1, Ujina 2, Ohta 1
D3–P2b	2	Higashihama 1, Ujina 1
Female:		
D2–P2a	4	Higashihama 4
D2–P2b	26	Higashihama 24, Muromi 1,
		Ohta 1
D3–P2a	1	Najima 1
D3–P2b	15	Higashihama 4, Muromi 3,
		Ohta 3, Ujina 2, Najima 1,
		Zaimokuza 1, Tatara 1

The males with P2 are few, though most of the females show the characteristic of P2. The combinations of D2–P2b and D3–P2b are found very frequently in females, but it is to be noted that most of the specimens of the first combination came from Higashihama, while most of those of the last combination came from other localities than Higashihama.

3. Specimens with P3 (Fig. 4).

Mal	e;	a de la companya de l	
10 y	D2–P3a D3–P3b	1	Higashihama 1 Ujina 2 Najima 1 Muromi 2
Fem	ale:		
	D2–P3a	1	Higashihama l
	D2–P3b	1	Higashihama 1
	D3–P3a	5	Higashihama 1, Ujina 1,
			Najima 1, Momoji 1,
			Muromi 1
	D3-P3b	14	Higashihama 1, Muromi 5,
			Momoji 1, Najima 1, Tatara 1,
			Ohta 1, Kanazawa-hakkei 2,
			Funka Bay 2

The specimens with P3 are mostly females; the combination of D3-P3b is seen most frequently.

4. Specimens with P4 (Pls. XI–XII and Fig. 5).

]	Male:		
· · · ·	D 2P4a	2	Higashihama 2
-	D 8–P4b	1	Muromi 1
	D 9–P4b	2	Muromi 2
	D10-P4b	4	Higashihama 1, Muromi 2,
			Najima 1
	D11-P4b	1	Arao 1
	D12–P4b	1	Ohta 1
	D13-P4b	1	Kanazawa-hakkei 1

The specimens with P4 are generally connected with the C group in the morphology of dactylus. They are rather few, but distributed widely throughout the localities.

5. Specimens with P5 (Pls. X-XII and Fig. 5).

Male	:		
	D 7-P5c	1	Funka Bay 1
	D 8–P5b	3	Higashihama 3
	D 9–P5a	1	Muromi 1
Second and second	D10–P5a	1	Higashihama 1
i.	D10-P5b	9	Higashihama 9
	D11-P5b	8	Higashihama 7, Okayama 1
	D12–P5a	9	Higashihama 9
1997) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	D12-P5b	17	Higashihama 17
	D12-P5c	4	Higashihama 1, Muromi 2,
			Momoji 1
	D13–P5a	2	Higashihama 1, Okinoshima 1
	D13–P5b	4	Higashihama 4
	D13–P5c	2	Higashihama 1, Muromi 1
	D14–P5a	^{1.} ^{1.} 1.	Higashihama 1
	D14–P5b	4	Muromi 2, Najima 1,
			Okinoshima 1
			Okinoshima 1

The type P5 is found only in the male, and the major combinations with the types of dactylus are D10–P5b, D11–P5b, D12–P5a and D12–P5b. The specimens with P5 are generally combined with the C group of dactylus, except for the specimen Cat. No. 1001 which shows the combination D7–P5c.

6. Specimens with P6 (Pl. IX and Fig. 4).

Ν	Aale:		
	D2-P6a	4	Higashihama 4
	D3–P6a	1	Higashihama 1
	D4-P6a	14	Higashihama 10, Ohta 3,
			Kanazawa-hakkei 1
	D4-P6b	2	Higashihama 2
	D4-P6c	5	Higashihama 5
	D4'-P6a	1	Higashihama 1
	D4′-P6b	1	Higashihama 1
	D5–P6a	• • 1	Muromi 1

Fig. 5. Distal part of the larger cheliped of Callianassa japonica.

Fig. 5. Distal part of the larger cheliped of *Callianassa japonica*. a: A male from Funka Bay, Hokkaido, Cat. No. 1001, showing the form D7–P5c. b: A male from Momoji Beach, Hakata Bay, Cat. No. 9021, D7–P7b. c: A male from the estuary of the Muromi River, Cat. No. 9036, D8–P4b. d: A male from Higashihama Beach, Cat. No. 9163, D8–P5b. e: A male from the estuary of the Muromi River, Cat. No. 9029, D9–P4b. f: A male from the estuary of the Muromi River, Cat. No. 9035, D10–P4b. g: A male from Najima Beach, Hakata Bay, Cat. No. 9013, D10–P5b. h: A male from Higashihama Beach, Cat. No. 9086, D10–P5b. i: A male from Higashihama Beach, Cat. No. 9121, D11–P5b. j: A male from the estuary of the Ohta River, Cat. No. 7015, D12–P4b. k: A male from Higashihama Beach, Cat. No. 9082, D12–P5a. 1: A male from Higashihama Beach, Cat. No. 9160, D12–P5a. m: A male from Higashihama Beach, Cat. No. 9159, D12–P5b. n: A male from Momoji Beach, Cat. No. 9017, D12–P5c. o: A male from the estuary of the Muromi River, Cat. No. 9034, D12–P5c. p: A male from Kanazawa-hakkei, Cat. No. 3001, D13–P4b. q: A male from Najima Beach, Cat. No. 9007, D14–P5b.

The specimens with P6 are combined with D2, D3, D4, D4' and D5, and the major combination is D4-P6a.

7. Specimens with P7 (Pl. X and Figs. 4–5).

Male

1	viaic.		
	D4–P7a	5	Higashihama 5
	D4–P7c	1	Higashihama 1
	D4′–P7b	4	Higashihama 4
	D4'-P7c	6	Higashihama 6
	D5–P7b	7	Higashihama 5, Muromi 1,
	-		Ujina l
	D5–P7c	3	Higashihama 2, Ohta 1
	D6–P7b	1	Muromi 1
	D7-P7b	1	Momoji 1

Most of the specimens with P7 are combined with the B group of dactylus, but the combinations are diverse, without showing any trend of concentration.

B. Variations in C. petalura Stimpson:

Examinations were made as in the previous species on the cutting edge of dactylus, the distal margin of palm and its connection with dactylus, and the cutting edge of fixed finger.

1. Variation of the cutting edge of dactylus. There are two groups (A-B) and seven types (D1-D7) of variations (Fig. 6).

A group. This group consists of D1 and D2 and is characterized by the simple cutting edge of dactylus.

D1. The cutting edge is smooth on the whole length, or sometimes serulate in the distal half. Generally the serulation becomes indistinct toward the tip, as seen in the specimens Cat. Nos. 9021 and 9057.

D2. The proximal portion of the cutting edge swells out a little. The specimen Cat. No. 1017 may be included in this type, although the proximal half of the cutting edge is strangely marked with three irregular lobules (Fig. 8c).

B group. This is composed of five types D3, D4, D5, D6 and D7. The cutting edge bears a low but broad truncate tooth in the proximal half, which is furnished at the distal end with a small outgrowth. The distal half of cutting edge shows a wide range of variation.

D3. The cutting edge becomes concave in the distal half.

D4. The cutting edge is provided with two shallow concavities in the distal half.

D5. The two concavities are distinct. The distal one is broader than the proximal at the opening.

D6. The two distinct concavities are almost of the same width at the opening, and are nearly of the same depth.

D7. The two concavities are similar to D5, though in this type the proximal one is broader than the distal at the opening.

2. Variation of palm. The distal margin of palm and its connection with the fixed finger are variable. The variations are divisible into three major types (Fig. 7).

Fig. 6. Diagrams showing the variations of dactylus of the larger cheliped in *Callianassa petalura*. Seven types (D1–D7) are shown in two groups (A–B).

P1. The distal margin of palm is smooth and evenly connected with the fixed finger.

P2. The distal margin of palm is extended out a little over the outside of the proximal part of fixed finger. Consequently, the fixed finger comes just at or slightly above the lower edge of the distal margin of palm, when it is viewed from the outside.

- a. The distal margin of palm is smooth and rounded at the lower edge.
- b. The distal margin bears a simple outgrowth at the lower edge.
- c. The outgrowth at the lower edge is broad but with a smooth margin.
- d. The outgrowth is broad and serrulated along the margin.

P3. A prominent notch is formed on the distal margin of palm at the connecting point with the fixed finger.

Fig. 7. Diagrams showing the variations of the distal part of palm of the larger cheliped in *Callianassa petalura*. Three types (P1-P3) are shown.

a. The distal margin of palm is smooth and is rounded at the upper edge of notch.

- b. A simple outgrowth at the upper edge of notch.
- c. The outgrowth is markedly broadened, but with a smooth margin.
- d. The outgrowth is broad and serrulated along the margin.

The characteristics of the A group of dactylus are combined with the character-

istics P1 and P2 of palm, and the B group is related with P3. Specimens with D1 are sometimes accompanied with P3.

3. Variation of the cutting edge of fixed finger. The cutting edge of fixed finger is classified into the following three forms.

F1. The cutting edge is concave rather than straight, the serration is more prominent in the proximal part.

F2. Rather gentle downward bend at the distal one third or one fourth of the cutting edge.

F3. The cutting edge is smooth, but with an abrupt downward bend just near the tip.

4. Combinations among the variations of dactylus, palm, and fixed finger. Combinations of the palm (propodus) forms with the shapes of dactylus and fixed finger are checked on respective specimens as follows. For the combinations of the dactylus types with those of palm and fixed finger refer to Table 6.

1. Specimens with P1 (Fig. 8).

Male:		
Combination	Individual Number	Locality
D1-P1-F1	a second the second sec	Tsuyazaki 1 ind.
Female:		and the second sec
D1-P1-F1	3	Tsuyazaki 2 ind., Shirai- wazaki 1 ind.

The specimens of this form are very few. Of the four individuals one male and two females are young and only one female (Cat. No. 9094) is mature and ovigerous. It is, however, to be noted that the smaller cheliped of this ovigerous female seems to be regenerated larger cheliped.

2. Specimens with P2 (Pls. XIII-XIV and Fig. 8).

male:

· · · · ·			
D1-P2b-F1	1	Tsuyazaki 1	_
D1-P2d-F1	8	Tsuyazaki 5, Akaiwa 1,	
		Shiriki-shinai 2	
D1–P2d–F2	1	Tsuyazaki 1	
D2-P2c-F1	1	Tsuyazaki 1	
D2-P2d-F1	1	Tsuyazaki 1	
D2-P2d-F2	1	Tsuyazaki 1	

Revision of Japanese Callianassids

Fig. 8. Distal part of the larger cheliped of *Callianassa petalura*. a: A female from Shiraiwazaki, Amakusa I., Cat. No. 9088, showing the form D1-P1-F1. b: A female from Tsuyazaki Beach, Fukuoka, Cat. No. 9011, D1-P2c-P1. c: A sample from Shiriki-shinai, Hokkaido, Cat. No. 1017, D1-P2d-F3. d: A male from Tsuyazaki Beach, Cat. No. 9045, D2-P2d-F1. e: A smaple from Shiriki-shinai, Cat. No. 1018, D2-P2d-F2. f: A female from Tsuyazaki Beach, Cat. No. 9078, D3-P3c-F2. g: A male from Tsuyazaki Beach, Cat. No. 9033, D3-P3c-F2. h: A male from Moheji, Hokkaido, Cat. No. 1001, D4-P3c-Fx. i: A male from Okinoshima I., Fukuoka Pref., Cat. No. 9001, D5-P3d-F3. j: Distal part of the palm of i. k: A male from Tsuyazaki Beach, Cat. No. 9029, D5-P3d-F3. I: A male from Tsuyazaki Beach, Cat. No. 9039, D6-P3a-F3. m: A male from Tsuyazaki Beach, Cat. No. 9030, D6-P3b-F3. n: A male from Tsuyazaki Beach, Cat. No. 9060, D6-P3d-F3. o: A male from Tsuyazaki Beach, Cat. No. 9024, D7-P3c-F3. p: Distal part of the palm of o. q: A male from Tsuyazaki Beach, Cat. No. 9034, D7-P3c-F3.

225

K. Sakai

. 1	Female:		
	D1-P2a-F1	1	Tsuyazaki 1
	D1-P2b-F1	3	Tsuyazaki 3
	D1-P2c-F1	12	Tsuyazaki 10, Oshima 1,
e grande de la			Shiriki-shinai 1
	D1-P2d-F1	15	Tsuyazaki 12, Oshima 3
	D1-P2d-F2	1	Shimoda 1
	D2-P2a-F1	1	Oshima 1
	D2-P2c-F1	1-	Amakusa 1
	D2-P2d-F1	2	Tsuyazaki 2
	Sex underermined:		
	D1-P2d-F1	1	Shiriki-shinai 1
	D1–P2d–F2	1	Shiriki-shinai 1
	D1–P2d–F3	1	Shiriki-shinai 1

Among these combinations shown above, D1-P2d-F1 is common in the male, while D1-P2c-F1 and D1-P2d-F1 are general in the female. Most females are included in the combinations D1-P2 and D2-P2.

3. Specimens with P3 (Pls. XIV-XV and Fig. 8).

Male:		
D1-P3b-F1	1	Tsuyazaki 1
D1-P3c-F1	1	Tsuyazaki 1
D3-P3c-F1	1	Tsuyazaki 1
D3-P3c-F2	1	Tsuyazaki 1
D4P3cF3	2	Tsuyazaki 2
D4–P3c–Fx	1	Moheji l
D5–P3b–F3	1	Akaiwa 1
D5–P3d–F3	4	Tsuyazaki 1, Okinoshima 1,
		Shimoda 2
D6–P3a–F3	1	Tsuyazaki 1
Dx-P3a-F3	1	Tsuyazaki 1
D6-P3b-F3	1	Tsuyazaki 1
D6–P3c–F3	1	Tsuyazaki 1
D6–P3d–F3	2	Tsuyazaki 2
D7-P3c-F3	13	Tsuyazaki 11, Oshima 2
D7-P3d-F3	2	Shiriki-shinai 2
Female:		
D3–P3c–F2	1	Tsuyazaki 1
Sex undetermined:		
D1-P3d-F3	1	Shiriki-shinai 1

The specimens with P3 are restricted to the males with the dactylus of the types D1, D3, D4, D6 and D7. Only a female Cat. No. 9078 is exceptional. There is a tendency that D1 is combined with F1, and D4, D5, D6 and D7 are related with F3. Throughout these combinations, D7–P3c–F3 is the commonest. It is noteworthy

that the specimens from Tsuyazaki Beach are very variable in the combination of characteristics of the larger cheliped.

IV. Revision of Japanese Callianassids

The following are the reviews of the Callianassids previously reported from Japan basing on the morphological variations of the larger cheliped described above in detail.

STIMPSON (1860) described C. petalura, both male and female, but he payed no attention to the sexual differentiation in the species. The following references seem to show that his species represents certainly one of the two Japanese species, namely C. petalura.

1. The type locality, Shimoda, is situated near the tip of the Izu Peninsula and faces the open sea of Sagami Bay. The coast is mostly rocky and water is very clear. Such circumstances are much different from those of the other species living in Tokyo Bay or the likes. The similar specimens treated in the present paper were collected abundantly at Tsuyazaki, Fukuoka. In addition to the morphological similarity, this living circumstances resemble closely those of Shimoda, the type locality of the STIMPSON's species. For these reasons, the specimens from Tsuyazaki were identified with *C. petalura*.

2. He described about the larger cheliped as "pedes primi paris forminae eis maris similes;" and "palma quam carpus non brevior, …" The first definition quoted above may show that the dactylus of STIMPSON'S species is applicable to the A group of *C. japonica* or *C. petalura*. However, the second feature restricts his species to *C. petalura*, because among all the specimens with the characteristic of A group in the present material, only some of *C. petalura* bear the palm which is not shorter than the carpus (Table 9).

3. STIMPSON wrote "Foeminae long 1.57 (=39.9 mm); carapacis, 0.36 (=9.1 mm); long. carpi manus dactylique junctorum chelipedis majoris, 0.70 poll (=17.8)." The specimens with the body length of 38.0-41.0 mm in the present material can be referred to STIMPSON's dimensions of the carapace length and the length of the larger cheliped from carpus to dactylus (Tables 7 and 8).

Of C. japonica, the males Cat. Nos. 7015, 9037 and 9059 well comform to STIMPSON's dimensions, but the shape of their larger cheliped does not agree with that of his specimens, and in the female the cheliped length is much smaller than that given in STIMPSON's dimensions. In C. petalura, however, the male cheliped is much longer than in STIMPSON's specimens, while in the females Cat. Nos. 3002 and 9048 the cheliped length is agreeable to STIMPSON's dimensions. For those reasons, it is supposed that STIMPSON's measurements were made on the female of C. petalura, but not on C. japonica.

K. Sakai

MAKAROV (1935) reported the male of C. gigas Dana var. japonica from Peter the Great Bay in the Sea of Japan. Later he (1938) revised the name of his specimens to C. gigas var. eoa nov. It is seen from his figure of the larger cheliped that his species is nothing but a male of C. petalura with the larger cheliped of form D6-P3a-F1. This form is, however, not represented in the present material of C. petalura.

ORTMANN (1891) described a Callianassid female from Tokyo Bay as a variety of C. subterranea. His description is simple and insufficient to discriminate his species from others, but his figure (Pl. 1, Fig. 10a) seems to show some specific characteristics. The characteristics shown in his figure may be summed up as follows.

1. The proximal tooth on the lower margin of merus is convex rather than straight and serrulate on its lower margin, and never protruded distally so much as in C. *petalura*.

2. The upper margin of merus is crenulate, unlike that of C. petalura.

3. The carpus is broad and almost as long as wide.

4. The cutting edge of dactylus assumes the type D2 of *C. japonica*, although the exact feature of the distal margin of palm cannot be referred to as the part is obscurely drawn.

The characteristics mentioned above are seemingly attributable to the second species of the Japanese Callianassids *C. japonica*, but not to the STIMPSON's species.

BOUVIER (1901) reported two new species, C. californiensis var japonica and C. harmandi. The type specimens of C. californiensis var. japonica is mentioned as the female. According to his description it is supposed that the dactylus of larger cheliped might be of the type D3 of B group of C. japonica, as the female of C. japonica will never take any of other types D4, D4', D5, D6 and D7. However, DE MAN (1928a) corrected the sex of the type specimen to the male from the female, when he gave a revision of C. californiensis var. japonica. In C. harmandi the dactylus of larger cheliped might be of the form D12 or D13 of C group.

Concerning the proportion of the palm to the carpus BOUVIER described on *C. harmandi*, *C. japonica* and *C. petalura* in the key as "Carpe avant à peu prés la longieur de la portion palmaire." and on *C. californiensis* var. *japonica* as "Carpe franchement plus long que la portion palmaire et" However, those definitions are not always correctly applicable seen in the following reference.

To apply the above-mentioned definitions easily to the specimens of the present material, the proportion of the palm to the carpus is classified for convenience' sake into α , β and τ types; the palm is longer than the carpus in α type, the palm is as long as the carpus in β type and the palm is shorter than the carpus in τ type. The whole specimens of *C. japonica* and *C. petalura* in the present material were checked according to this classification (Table 9). In *C. japonica* the specimens of A and B groups in the morphology of dactylus tend to bear τ type, on the other hand those of C group collected at other localities than Amakusa consist of 19 α type and 1 β

type, while those collected from Amakusa are composed of 7 α type, 11 β type and 37 τ type. In *C. petalura* the specimens of A group consists of 12 α type, 9 β type and 34 τ type, while those of B group are 1 α type and 1 β type.

BOUVIER framed a good definition for his *C. californiensis* var. *japonica*, but the definition does not always apply to his *C. harmandi* and to the specimens of A group of *C. petalura* either. The specimens of B group of *C. petalura* never follow the BOUVIER's definition, the palm is much longer than the carpus in them.

BOUVIER shows the measurement data of *C. harmandi* on sexually undetermined specimens; the body length is 30.0 mm, the carapace 6.7 mm and chela 7.5 mm. In the present material only the male Cat. No. 9187 is found situated very close to BOUVIER's dimensions. Another male Cat. No. 9056 is also close to his dimensions, but its larger cheliped shows the form D4–P6a which is not included in the forms taken by BOUVIER'S *C. harmandi*.

BALSS (1914) mentioned on C. subterranea var. japonica from the province of Bingo. His measurement datum of the larger cheliped shows that in the larger specimen the carpus length is 8.1 mm, the carpus height 6.8 mm and the chela length 9.0 mm, while in the smaller specimen the carpus length is 4.0 mm, the carpus height 3.0 mm and the chela length 6.0 mm. This datum is very helpful to review BALSS' specimens. His larger specimen is related closely with the males Cat. Nos. 9062, 9069 and 9165 of *C. japonica* with the dactylus of B group. On the contrary the smaller specimen is similar to the female Cat. No. 9063 and the males Cat. Nos. 9083 and 9090 of *C. petalura*; the female with the dactylus of B group and the males with the dactylus of A group. In short, it is supposed that BALSS' specimens consist of *C. japonica* and *C. petalura*. It must be remembered, however, that BALSS himself regarded *C. petalura* as synonymous with *C. japonica*.

PARISI (1917) described C. harmandi. His figure of the larger cheliped shows the form D14–P5c of C. japonica.

DE MAN (1928a) revised the Japanese Callianassids. According to his revision, the male of *C. harmandi* is characterized by larger cheliped of the form D11 or D12–P5c, the male of *C. californiensis* var. *japonica* by the larger cheliped of D5–P7b, and the female of *C. japonica* by the form D2 or D3–P2b.

He examined the type specimen of *C. californiensis* var. *japonica*, and defined it as a male, though BOUVIER (1901) described it as a female. It is very likely that the type is a male, because DE MAN's figure (Pl. 4, fig. 9) of the original specimen shows the larger cheliped of the form D5–P7b which is only found in the male.

He described the carpus of the larger cheliped on page 14 as "Differently from *Call. japonica*, in which the upper border appears longer than the breadth of the joint, in *Call. harmandi* it is *shorter* than the breadth." DE MAN further described on *C. californiensis* var. *japonica* on page 19 as "The upper border of the carpus is 7,25 mm.

K. SAKAI

long; the width being 6,8 mm., this joint appears much *broader* in proportion to its length than in the male of *Call. japonica* and ..." However, the proportions are not always agreeable to DE MAN's definition. In most specimens attributed to his *C. harmandi* and with the dactylus of C group, the upper margin of the carpus appears shorter than the height of the joint. However, in some of such specimens the upper margin may be longer than the height of the joint as in specimens Cat. Nos. 9060, 9089, 9091, 9095, 9103, 9124, 9126, 9138, 9142, 9146, 9163, 9164, 9181, 9183 and 9186, or the upper margin may be equal to the height of the joint as in specimens Cat. Nos. 9047, 9061, 9068, 9081, 9086, 9088, 9100, 9116, 9130, 9132, 9136, 9148, 9149, 9160, 9169, 9170, 9176, 9179, 9189 and 9191.

In the present material, the specimens attributed to *C. japonica* and with the larger cheliped of the forms D1 and D2 follow DE MAN's definition in the above-mentioned proportion. The specimens with the dactylus of B group, namely the individuals called by the name of *C. californiensis* var. *japonica*, generally agree with DE MAN's definition, too, but in some of them carpus may be as long as broad as in specimens Cat. Nos. 3002, 7009, 7022, 9185 and 9196, or broader than long as in specimens Cat. Nos. 1001, 7016, 7027, 9021 and 9049.

Concerning the proportion of the fixed finger to the palm, DE MAN (1928a, p. 15) described on *C. harmandi* that "This finger (=fixed finger) is distinctly *shorter*, but in *Call. californiensis* DANA var. *japonica* BOUV. distinctly *longer* than the palm between the basal notch and the carpal articulation." However, it is observed that the specimens with the dactylus of B group often include such exceptions, in which the fixed finger is shorter than the palm.

YOKOYA (1930) wrote about C. japonica, though he treated C. japonica as a synonym of C. petalura. As his specimens came from the river estuary or from the sandy seaweed bed, it is very probable that his species is C. japonica. YOKOYA (1939) adopted in his description the name of C. petalura instead of C. japonica.

Yü (1931) wrote on three species of the genus *Callianassa*. According to the present observations, his *C. harmandi* is provided with the larger cheliped of the form D11–P4a or P4b, his *C. californiensis* var. *japonica* with the cheliped of D4–P7a, and his *C. japonica* is of the form D3–P2a.

MIYAZAKI (1937) described on the hollow of C. *japonica*. He note is agreeable to the holes of C. *japonica* observed at the estuary of the Muromi River.

MAKAROV (1938) wrote about C. harmandi, C. japonica and C. californiensis var. bouvieri. Reference to their forms of the dactylus is as follows; his C. harmandi belongs to the group with the larger cheliped of the form D14–P5b, his C. japonica to the group of D3–P2a and his C. californiensis var. bouvieri to D4–P7a or P7b. In the result C. californiensis var. bouvieri is synonymous with BOUVIER'S C. californiensis var. japonica.

NAKAZAWA (1947) described on C. harmandi and C. japonica. However, their

figures are insufficient to descriminate respective species.

UTINOMI (1956) illustrates C. japonica as C. harmandi.

KAMITA (1957) figured the larger cheliped of a male *C. subterranea japonica*. His figure is surely of the form D5–P7b and is different from ORTMANN's species, but it is rather related closely to Bouvier's *C. californiensis* var. *japonica*.

V. Conclusions

 Although the validity of *C. petalura* was questioned by BORRADAILE (1903, p. 546) and DE MAN (1928b, p. 19), *C. petalura* is to be accepted as a distinct species.
 Several species of the genus *Callianassa* reported from Japan are grouped into two species:

1. Callianassa petalura STIMPSON, 1860

= C. gigas var. japonica Makarov, 1935

= C. gigas var. eoa Makarov, 1938

2. Callianassa japonica ORTMANN, 1891

= C. harmandi BOUVIER, 1901

= C. californiensis var. japonica BOUVIER, 1901

= C. californiensis var. bouvieri Makarov, 1938

C. gigas var. japonica is synonymous with C. petalura. STIMPSON described on the female type specimen, but MAKAROV on the male. The second species, C. japonica, has three synonyms: C. harmandi, C. californiensis var. japonica and C. californiensis var. bouvieri. ORTMANN showed the female type specimen, but BOUVIER and MAKAROV the male.

3. Bouvier (1901) described C. californiensis var. japonica on the female. However, as DE MAN (1928a) pointed out, it is sure that BOUVIER'S type specimen is male. 4. Variability of the larger cheliped is prominent on the cutting edge of the dactylus, the distal margin of the palm and in its connection to the fixed finger. As far as the variation of the dactylus is concerned, C. japonica bears the forms of ORTMANN'S C. japonica, BOUVIER'S C. californiensis var. japonica and BOUVIER'S C. harmandi, while C. petalura bears the forms of STIMPSON'S C. petalura and MAKAROV'S C. gigas var. japonica. 5. The above-mentioned variations of the larger cheliped are applied to respectively described species as follows:

C. japonica Ortmann, 1891	D2
C. harmandi BOUVIER, 1901	D13 or D14
C. californiensis var. japonica BOUVIER, 1901	D3
C. californiensis var. japonica, DE MAN, 1928	D5–7b
C. californiensis var. bouvieri MAKAROV, 1938	D4–P7a or P7b
C. petalura Stimpson, 1860	D2
C. gigas var. japonica MAKAROV, 1935	D6–P3a–F1

6. Some described species are defined improperly. BALSS (1914) reported C. subterranea var. japonica with measurement of two specimens, the larger one seemingly belongs to C. californiensis var. japonica for the form of the dactylus, while the smaller one to C. petalura. KAMITA (1957) explained C. subterranea japonica by the form of the dactylus of C. californiensis var. japonica.

VI. Specific descriptions proposed

A. Callianassa japonica ORTMANN, 1891

Callianassa subterranea (Montagu) var. japonica Ortmann, 1891, p. 56, pl. 1, fig. 10a; Bouvier, 1901, pp. 332–334; Balss, 1914, p. 91; Yokova, 1930, p. 543; Miyazaki, 1936, pp. 317–320, fig. 1–2; Nakazawa, 1927, p. 1038, fig. 1999.

Callianassa subterranea japonica: KAMITA, 1957, pp. 107–109, fig. 49.

Callianassa (Trypaea) japonica: BORRADAILE, 1903, p. 546; DE MAN, 1928a, pp. 19–22, pl. 5, figs. 10–10 1; DE MAN, 1928b, pp. 27, 93, 105–106; YU, 1931, pp. 95–96, fig. 5; MAKAROV, 1938, pp. 69–71, fig. 25.

Callianassa japonica: NAKAZAWA and KUBO, 1957, p. 754, fig. 2174; SAKAI, 1964; MIYAKE, 1965, p. 633, fig. 1037.

Callianassa Harmandi BOUVIER, 1901, pp. 332-334; BORRADAILE, 1903, p. 546.

Callianassa harmandi: NAKAZAWA and KUBO, 1947, p. 754, fig. 2173; UTINOMI, 1956, p. 63, pl. 32, fig. 2. Callianassa hermandi: NAKAZAWA, 1927, p. 1039, fig. 2000.

Callianassa (Trypaea) Harmandi: PARISI, 1917, p. 24, fig. 7; DE MAN, 1928a, pp. 13–15, pl. 3, figs. 6– 6j; DE MAN, 1928b, pp. 27, 102–103; YÜ, 1931, pp. 92–93, fig. 3.

Callianassa (Tyrpaea) harmandi: MAKAROV, 1938, pp. 66-67, fig. 22-23.

Callianassa californiensis var. japonica BOUVIER, 1901, pp. 332-334.

Callianassa (Trypaea) californiensis DANA var. japonica: DE MAN, 1928a, pp. 18-19, pl. 4, figs. 9-9e; DE MAN, 1928b, pp. 27, 93, 105; YU, 1931, p. 94, fig. 4.

Callianassa (Trypaea) californiensis DANA var. bouvieri MAKAROV, 1938, pp. 71-72, fig. 26.

Description.- The cervical groove lies near the posterior one third of the carapace. The inner surface of the ischium of the third maxilliped bears a vertical row of spinules numbering 17 on an avarage.

This species is classified into three groups by the form of the dactylus of the larger cheliped (Fig. 2). A-group is represented by ORTMANN'S *C. japonica*, B-group is by BOUVIER'S *C. californiensis* var. *japonica* and C-group is by BOUVIER'S *C. harmandi*.

In the form of C. *japonica* (A-group) the proximal tooth on the lower margin of the merus is less developed and simple, especially in the young stage. The tooth is formed similarly in both male and female. The merus is about as long as the ischium, but distinctly shorter than the carpus. The carpus is longer than high and longer than the palm.

The forms of *C. californiensis* var. *japonica* (B-group) and *C. harmandi* (C-group) are characterized by that the proximal tooth of the merus is convex rather than straight on its lower margin. The merus is a little longer than the ischium. In the former, the carpus is a little shorter than or often equal to the merus, longer than the palm, and usually longer than high, but sometimes higher than long. Of the latter the smaller

specimens from Higashihama Beach show the character that the carpus is about as long as or a little longer than the merus, while in the full-grown ones the carpus is as long as or a little shorter than the merus. The proportion of the carpus height to the length and the relation between the carpus and the propodus are indefinite.

Other specific characteristics are given as follows: The upper margin of the ischium is smooth and proximally terminates with a subacute tooth. The upper margin of the merus is crenulate, and that of the carpus is twisted or curved inward more strongly at the proximal part than at the distal.

The habitat is restricted to the tidal zone of the protected coastal area around Japan, and the hollow is cross-shaped.

B. Callianassa patalura STIMPSON, 1860

Callianassa petalura STIMPSON, 1860, p. 23; BOUVIER, 1901, pp. 332-334; YOKOYA, 1939, p. 227-278; SAKAI, 1964; MIYAKE, 1965, p. 633, fig. 1036.

Callianassa (Trypaea) gigas DANA var. japonica MAKAROV, 1935, pp. 323-324, fig. 4.

Callianassa (Trypaea) gigas var. eoa MAKAROV, 1938, pp. 67-69, fig. 24.

Callianassa subterranea var. japonica ORTMANN: BALSS, 1914, p. 91.

Callianassa subterranea japonica: Кікисні, 1932, р. 7.

Description.- The cervical groove is situated at about posterior one fourth of of the carapace. The ischium of the third maxilliped bears inside a vertical row of spinules. These spinules are short and sharp, numbering 13-30, most frequently 19-25.

On the larger cheliped, the upper margin of the ischium is usually denticulate in roughly the proximal half. The denticles become more distinct proximally, but they may often be inconspicuous or quite missing in smaller specimens. The merus is slightly longer than the ischium. The proximal tooth of the merus is protruded forward into a pointed tip. The upper margin of the carpus runs parallel with the lower margin.

Variations of the dactylus of larger cheliped are classified into two groups (Fig. 4). A-group is represented by STIMPSON'S *C. petalura* and B-group is by MAKAROV'S *C. californiensis* var. *japonica*. In A-group the carpus is longer than the merus and longer than high, the proportion of the palm to the carpus is indefinite. In B-group the carpus is usually longer than the merus, but it may often be equal to or shorter than the merus. The carpus is longer than high, and shorter than the palm.

This species is found burrowing on the sandy-beach facing the open-sea or the likes.

References

Callianassa (Trypaea) petalura: BORRADAILE, 1903, p. 546; DE MAN 1928b, pp. 28, 115.

BALSS, H. 1914. Ostasiatishe Decapoden II. Die Natantia und Reptantia. Abh. math. -phys. Kl. K.B. Akad. Wiss., München. suppl.-vol. 2, no. 10, p. 91.

BORRADAILE, L.A. 1903. On the classification of the Thalassinidea. Ann. Mag. Nat. Hist. ser. 7. vol. 12, no. 71, p. 546.

BOUVIER, E.L. 1901. Sur quelques Crustacés du Japan, offerts au Muséum par m, le Dr. HARMAND. Bull. Mus. d'Hist. Nat., Paris. no. 7, pp. 332–334.

KAMITA, T. 1957. Studies on the Decapod Crustaceans of Korea. Part II Hermit-Crabs (4). Sci. Rep. Shimane Univ., Matsue. no. 7, pp. 107–109, fig. 49.

KIKUCHI, K. 1932. Decapod Crustaceans of Toyama Bay. The Toyama Kyoyuku, no. 227, p. 7.

MAKAROV, V.V. 1935. Beschreibung neuer Dekapoden-Formen aus den Meeren des Fernen Ostens. Zool. Anz., Leipzig. vol. 109, pp. 323–324, fig. 4.

------ 1938. Crustacea. Fauna of U.S.S.R. vol. 10, no. 3, pp. 66-73, figs. 22-26.

- DE MAN, J.G. 1928a. A contribution to the knowledge of twenty-two species and three varieties of the Genus *Callianassa* LEACH. Capita Zoologia. vol. 2, no. 6. pp. 13–15, 18–22, pls. 3–5.
- 1928b. The Decapoda of the Siboga-Expedition. Part VII The Thalassinidae and Callianassidae by the Siboga-Expedition with some remarks on the Laomediidae. Siboga-Expeditie, Leiden, 39a6, pp. 27-28, 102-115.

MIYAKE, S. 1965. Anomura. In: Nippon Dobutsu Zukan (New Illustrated Encyclopedia of the Fauna of Japan), Tokyo. p. 633, figs. 1036–1037.

MIYAZAKI, I. 1936. Habits and Larval Forms of some Decapod Crustaceans used for Fish Bait. Bull. Jap. Soc. Sci. Fish. vol. 5, nos. 1-6, pp. 317-320.

NAKAZAWA, K. 1927. Anomura. In: Nippon Dobutsu Zukan (Figuraro de Japanaj Bestoj), Tokyo. pp. 1038-1039, figs. 1999-2000.

NAKAZAWA, K. and KUBO, I. 1947. Macrura. In: Nippon Dobutsu Zukan (Illustrated Encyclopedia of the Fauna of Japan), 1st rev. ed., Tokyo. p. 745, figs. 2173–2174.

ORTMANN, A.E. 1891. Die Decapoden-Krebse des Strassburger Museums. III Die Abtheilungen der Reptantia Boas; Homaridea, Loricata unt Thalassinidea. Zool. Jahrb., Syst., Jena. vol. 6, p. 56, pl. 1, fig. 10a.

PARISI, B. 1917. I Decapodi Giapponesi del Museo di Milano. V Galatheidea e Reptantia. Atti Soc. Ital. Sci. Nat. vol. 56, p. 24, fig. 7.

SAKAI, K. 1964. Taxonomic characteristics of the Japanese Callianassids. At the meeting of the Zoological Society of Japan, Nagoya.

STIMPSON, W. 1860. Prodromus descriptionis animalium evertebratorum, quae in Expeditione ad Oceanum Pacificum Steptentrionalem, a Republica Federata missa, Cadwaladaro Ringgold et Johanne Rodgers Ducibus, observavit et descripsit. Pars VIII Crustacea Macrura. Proc. Acad. Nat. Sci. Philadelphia. p. 23.

UTINOMI, H. 1956. Anomura. In: Coloured Illustrations of Sea Shore Animals of Japan, Osaka. p. 63, pl. 32, fig. 2.

Yokova, Y. 1930. Report of the Biological Survey of Mutsu Bay. 16 Macrura of Mutsu Bay. Sci. Rep. Tohoku Imp. Univ. ser. 4, vol. 5, no. 3, p. 543.

——— 1939. Macrura and Anomura of Decapod Crustacea found in the neighbourhood of Onagawa, Miyagi-ken. Sci. Rep. Tohokū Imp. Univ. ser. 4, vol. 14, nos. 2–3, pp. 277–278.

YU, S.C. 1931. On some species of shrimp-shaped Anomura from North China. Bull. Fan Mem. Inst., Biol. vol. 2, no. 6, pp. 92–96, figs. 3–5.

234

Cat. No. of Specimen	Individual Number	Locality	Date of Collection	Collector's Name
1001-1003	13,299	Funka Bay, Hokkaido	Mar. 11, '63	Kazuo Oshima
3001	13	Kanazawa-hakkei, Tokyo Bay	Aug. 7, '60	K. Sakai
3002-3004	1♂, 2♀♀	· · · · · · · · · · · · · · · · · · ·	Jan. 5, '61	K. Sakai
3005-3007	3 ovig. 99	Kisarazu and Aohori, Tokyo Bay	July 30, '57 Jun. 21, '60	Minoru Katada
3008	19	Zaimokuza Beach, Kamakura, Sagami Bay	Dec. 31, '60	K. Sakai
7001	13	Sami, Okayama	Aug. '34	S. MIYAKE
7002–7014	733 (7 with Bop.) 699 (5 with Bop.)	Ujina, Hiroshima	Oct. 19, '58	Akio Taki
7015–7019 7021–7027	7강강, 5우우	Estuary of Ohta River, Hiroshima	Apr. 4, '62	Reichiro HIROTA
9001-9002	233	Okinoshima I., Fukuoka Pref.	May 19–29, '33	Ohshima, Ikeda and Yasumoto
9003-9009	2♂♂, 3♀♀, 2 ovig. ♀♀	Najima Beach, Hakata Bay, Fukuoka	May 5, '54	S. MIYAKE
9010	13		May 2, '60	K. Sakai
9011	13		May 8, '60	K. Sakai
9012-9013	13,19		May 11, '60	K. Sakai
9014	1 \bigcirc (with Bop.)	"	Sept. 23, '60	K. Sakai
9015	19	Estuary of Tatara River, east of Najima Beach	Jun. 17, '59	TAKI and ONO
9016	1♀	"	May 12, '63	K. Sakai
9017-9021	233, 2우우, 1 ovig. 우	Momoji Beach, Hakata Bay	May 30, '58	A school teacher
9022-9034	7중중, 5우우, 1 ovig. 우	Estuary of Muromi River, west of Momoji Beach	Apr. 7, '63	Sakai, Baba and Miya
9035-9041	1233 (1 with Bop.),		Apr. 9, '63	K. Sakai
9043-9052	4♀♀, 1 ovig. ♀			
9053	13		July 22, '63	K. Sakai
9054	13	Arao, Ariake Bay	Jun. 4, '57	School students
9055-9186	97중중, 17우우, 18 ovig. 우우	Higashihama Beach, Amakusa I., Kumamoto Pref.	Apr. 23–25, '63	K. Sakai
9187-9205	1333, 699	>>	Apr. 29, '64	Y. Miya

Table 1. Material of C. japonica examined; locality, date and collector's name.

K. Sakai

Cat. No. of Specimen	Individual Number	Locality	Date of Collection	Collector's Name
1001	13	Moheji, Hakodate, Hokkaido	Jun 18, '54	Еіјіго Nічама
1002–1003 1005–1019	233 533, 2♀♀, 4 ovig. ♀♀, 4 s.u.	Shiriki-shinai, Hokkaido	May 20, '55 Aug. 3, '59	Minoru Імајіма M. Імајіма
2001	13	Tobishima I. Yamagata Pref.	Aug. '50	Shoichiro Suzuki
3001-3004	2♂♂, 1♀, 1 ovig. ♀	Shirahama Beach, Shimoda, Izu Peninsula	Apr. 22, '64	Tadayoshi Tochigi
9001	1 ₀ *	Okinoshima I., Fukuoka Pref.	May 19–29, '33	Ohshima, Ikeda and Yasumoto
9002	l ovig. ♀	Oshima I., Fukuoka Pref.	Jun 13, '56	S. MIYAKE
9003–9009	2♂♂, 1♀, 4 ovig. ♀♀	"	Sept. 18, '57	Yoshinori Motomatsu
9010-9011	13, 19	Tsuyazaki Beach, Fukuoka Pref.	Jun. 13, '60	K. Sakai
9012-9049	19♂♂, 17♀♀, 2 ovig. ♀♀		Apr. 30, '61	K. Sakai
9050–9075	1233, 4우우, 10 ovig. 우우		Jun. 22, '62	K. Sakai
9076-9086	833,3♀♀	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Apr. 26, '63	К. Ѕакаі
9087	1 ovig. 9	Amakusa, Kumamoto Pref.	Aug. 21, '43	S. MIYAKE
9088	19	Shiraiwazaki, Amakusa I.	Mar. 29, '53	S. MIYAKE
9089–9090	233	Akaiwa, Amakusa I.	Mar. 31, '53	MIYAKE and Sumikawa
9091-9093	333	Tsujishima I., Amakusa	Apr. 26, '63	K. Sakai

Table 2. Material of C. petalura examined; locality, date and collector's name.

					Larger	Cheliped			
Cat. No. of Specimen	Sex	Body Length mm	Side	Total Leng. mm	Merus Leng. mm	Carpus Leng. mm	Carpus Ht. mm	Palm Leng. mm	Dactylus Leng. mm
1001	ð		L	46.0	13.2	14.2	15.0	14.0	10.5
1002	4		R		6.3	7.7	6.3	5.8	5.0
1003	ç		R		6.4	7.8	6.3	5.8	5.5
3001	ර	57.0	L	43.0	11.5	10.5	12.0	11.8	8.0
3002	ే	40.5	R	28.0	6.8	6.8	6.8	6.0	5.4
3003			L	30.5	7.1	8.0	7.0	5.7	6.5
3004	Ŷ		L	28.0	6.0	7.2	6.2	5.8	5.4
3005	$\stackrel{\circ}{_{ m p}}$ ovig.	36.0					—		
3006	\mathcal{Q} ovig.	36.0							·
3007	$\stackrel{\circ}{_{\sim}}$ ovig.					—			
3008	Ŷ	43.0	L	20.0	4.3	5.5	3.8	4.2	3.8
7001	ੰ	32.0	L	25.0	5.9	5.6	6.0	6.7	4.7
7002	් Bop.	34.0	R		_				
7003	♀ Bop.		R						
7004	J Bop.	25.0	R	15.5	3.3	3.8	3.2	3.8	2.6
7005	J Bop.	37.0	L	24.5	5.2	5.9	5.5	5.5	4.6
7006	Ŷ	33.0	R						
7007	\bigcirc Bop.	31.5	R				·		
7008	\bigcirc Bop.	26.0	R	17.0	3.9	4.3	3.8	3.8	3.3
7009	♂ Bop.	27.5	R	17.0	3.7	4.3	4.5	3.8	3.0
7010	♂ Bop.	34.5	L	21.5	4.6	5.8	4.3	4.0	4.0
7011	♀ Bop.	40.0	L	24.0	5.1	5.5	4.9	5.3	4.4
7012	\bigcirc Bop.	43.5	L	24.0	5.2	5.5	5.0	5.5	4.5
7013	♂ Bop.	32.5	R	19.0	3.8	5.0	3.5	3.8	3.2
7014	♂ Bop.	31.5	L	17.5	3.8	4.4	3.5	3.8	3.2
7015	ð	40.0	R	27.0	6.3	6.3	6.8	7.3	4.7
7016	రే	39.5	L	30.5	7.0	7.5	7.6	6.1	6.8
7017	Ŷ		L	16.0	3.2	4.0	3.0	3.5	2.9
7018	9	28.0	L	14.5	3.0	3.8	2.8	3.0	2.6
7019	ð	24.5	R	12.5	2.7	3.0	2.5	3.0	2.0
7021	9	39.5	L	22.0	4.6	5.3	4.2	4.7	4.2
7022	ð	48.0	L	37.0	8.9	9.9	9.9	6.8	7.8
7023	Ŷ	39.0	R	19.0	4.2	5.0	3.9	4.3	4.0
7024	ę	44.0	\mathbf{L}	24.0	5.2	6.1	5.2	4.9	4.5
7025	ð	43.5	R	31.0	7.0	7.5	7.2	6.1	6.4
7026	రే	43.0	R	31.5	7.2	8.2	7.9	6.2	6.9
7027	ੰ	49.0	R	40.0	9.9	10.2	10.7	7.8	9.5

Table 3. Measurements of *C. japonica*, body length, length of larger cheliped and dimension of its respective parts; merus length, carpus length and height, palm length and dactylus length.

•	
Z	
ŝ	
KAI	

Table 3.	
(continued)	

9038	9037	9036	9035	9034	9033	9032	9031	9030	9029	9028	9027	9026	9025	9024	9023	9022	9021	9020	9019	9018	9017	9016	9015	9014	9013	9012	9011	9010	6006	8006 , 006	9007	9000 C006	9004	9003	9002	9001	opernuen	Cat. No. of		1
♀ ovig.	0 ₃	04 I	0-3	С ₃	0 ₃	0,	+0 '	بر0	04	40	+0	+0	+0	+0	♀ ovig.	0,	0 ₄	, +0	$\stackrel{\circ}{\rightarrow}$ ovig.	+0	0 ₃ ,	+0	40	$\stackrel{\circ}{_{\sim}}$ Bop.	0 ₃ ,	+0	40	C,	$\stackrel{\circ}{_{+}}$ ovig.	0-1 C	+ 0118.	0 +0	+0	+0	0,	0, L		Sex		
47.5	41.0	37.0	44.0	I		56.0	40.0	52.0	36.0	58.0	45.5	48.0	50.0	55.0	47.0	21.5	53.0	36.0	48.5	51.5	44.0	50.0		29.0	34.0	36.0	28.0	29.5	38.0	40.5	48.0	28.3 40 5	44.0	43.0	32.0	38.0	mm	Body		
Г	Ľ	R	R	Г	Ľ	٢	R	R	Ľ	L	R	R	Ľ	R	L	L	L	١	R	L	L	٣	R	Ľ	L	F	R	Г	R	R I	. ;	7 T	"	R	R	R		Side		
26.0	. 27.0	26.0	30.0	40.5	46.0		21.0		24.0	42.0	23.0	25.0	25.1	28.0	26.0	10.5	42.0		24.0	26.0	35.0	25.0	26.5	14.0	25.0	18.0		16.5	20.0		37.0	90.0]	22.0	24.5	30.0	mm	Total		
6.0	6.3	6.3	7.0	10.1	11.2		4.3	İ	5.7	11.0	5.1	5.5	5.5	6.5	5.3	2.5	10.0		5.0	6.0	8.1	5.0	5.8	2.9	5.6	3.9	I	3.3	4.0		9.0	4		4.9	5.9	7.3	mm	Merus Leng	Larger)
6.5	5.9	6.0	6.9	9.9	10.8	l	5.5		5.4	10.0	5.9	6.1	6.3	6.9	6.6	3.0	10.4		6.0	6.3	7.8	7.2	6.2	3.9	5.6	4.5	4.2	4.2	5.0	ŀ	8.4	5.0	[5.6	5.7	7.3	mm	Carpus	Cheliped	
5.8	6.5	6.8	7.2	11.0	12.0	[4.4		5.8	11.5	4.9	5.1	5.1	6.0	4.8	2.2	10.6	ļ	4.8	5.7	8.2	4.4	5 5	2.2	5.8	3.7	2.2	3.3	3.7	1	9.3	3.9		4.5	6.2	8.0	mm	Carpus H†		A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL
5.2	7.0	6.9	8.0	10.1	11.0	!	4.7		6.5	10.8	5.0	5.4	5.3	6.4	5.0	2.9	с. З		5.1	5.8	8.9	4.8	5.5	2.7	6.3	3.8	2.2	3.2	4.1	ĺ	6.8	3.9	I	4.8	6.2	8.0	mm	Palm		
5.2	4,8	4.4	5.3	7.8			4.1		4.2	8.2	4.1	4.8	5.1	5.1	4.9	1.9	8.2		4.2	5.0	5.9	4.7	5.1	2.4	3.9	3.2		3.0	3.0		7.7	3.2		4.0	4.8	6.1	mm	Dactylus Leng		

Revision of Japanese Callianassids

Table 3. (continued)

					Larger	Cheliped			
Cat. No. of Specimen	Sex	Body Length mm	Side	Total Leng. mm	Merus Leng. mm	Carpus Leng. mm	Carpus Ht. mm	Palm Leng. mm	Dactylus Leng. mm
9039	ð	40.0	L	26.5	6.4	5.9	6.5	7.0	4.5
9040	ð	39.5	L						
9041	đ.	56.0	\mathbf{L}	33.0	7.0	9.5	6.8	5.9	5.9
9043	ç	45.0	R	23.0	4.8	6.6	3.9	4.1	3.8
9044	ç	46.0	L	24.0	4.9	6.0	4.8	4.9	4.5
9045	Ŷ	38.0	L	19.0	4.1	5.1	3.9	4.0	3.3
9046	đ	40.0	R	24.0	5.4	6.8	5.8	4.8	4.8
9047	ð	35,0	\mathbf{L}	22.5	5.3	5.1	5.1	6.0	3.8
9048	ð		R	41.0	10.0	10.0	11.0	10.0	8.0
9049	ð	56.0	L	45.5	11.6	11.4	11.5	9.4	9.8
9050	ð		R	43.0	11.0	10.5	11.6	11.0	8.5
9051	A Bop.	49.0	L	26.0	5.7	6.1	5.7	5.9	4.7
9052	우 오이다. 우	28.0	Ĺ	15.0	3.1	4.9	2.9	3.0	2.7
9053	ే	52.0	R	40.0	10.0	10.9	10.0	7.5	8.8
9054	3	25.0	R	21.0	5.0	4.8	5.1	5.3	3.5
9055	ੱ	35.5	R	28.0	6.7	7.8	6.9	5.0	5.5
9056	3	30.0	L	21.0	4.8	6.0	4.9	3.8	4.2
9057	ð	24.5	R	21.5	5.0	5.8	5.5	4.0	4.2
9058	Ŷ	31.0	\mathbf{L}	16.0	3.4	4.4	3.1	3.1	3.1
9059	ð	34.0	\mathbf{L}	23.5	5.2	7.0	5.1	4.0	4.2
9060	ð	31.0	R	22.0	5.1	5.7	5.2	5.2	3.8
9061	ð	28.0	\mathbf{L}	22.0	5.2	5.2	5.2	5.1	4.3
9062	đ	35.0	R	29.0	6.9	8.0	7.1	5.1	6.0
9063	$\hat{\mathcal{Q}}$ ovig.	32.0	R	15.0	3.1	4.2	3.2	3.0	2.9
9064	ð	35.0	L	30.5	7.0	7.9	7.1	5.1	6.2
9065	ð	36.0	L	30.5	7.1	8.2	7.5	5.5	6.5
9066	ð	25.5	L	20.0	4.9	5.3	4.9	3.9	4.4
9067	Q ovig.	28.5	R	15.0	3.0	4.1	2.9	3.0	2.8
9068		30.5	L	24.0	5.7	5.8	5.8	5.8	4.1
9069	ð	36.5	ī	29.0	6.8	8.0	7.1	4.8	5.9
9070	3	38.0	L	31.0	7.8	8.6	7.9	5.5	6.8
9071	3	38.0	R	32.5	7.5	9.0	7.8	5.8	6.7
9072	Ŷ	31.0	R	14.5	3.2	3.9	3.0	3.1	2.9
9073	4	37.0	Ĩ.	27.2	67	7.5	7.0	4.9	5.5
9074	Q Q	29.5							
9075	ovia	30.0	T.	14.0	3.0	41	2.9	3.0	29
9076	+ 011g.	34.0	R	27.0	6.6	6.8	6.9	6.1	4.9
9077	0 *	31.0	I.	24.5	6.0	6.0	6.1	5.9	4.8
9078	0 ovia	32.0	R	16.0	3.2	4 2	3 1	3.0	3.0
9070	+ 0vig.	36.0	T	22.5	7 Q	89	8.0	6.2	69
9079	0 0 outr	20.0 20 5	л Б	12.5	7.0 3.0	3.2	2 A	0.4 2.5	99
0001	∓ ovig. ≯	29.J 27 0	. Т	20.0	· 47	4.8	4.8	- 4.6	3 4
0001	o ≁	27.0	ъ	20.0	50	60	6.2	Γ.Ο 5 Ω	J.⊤ ⊿ 1

-	
	÷.
N	4
2	2
10	5
Φ.	•
	•
\simeq	2

Table 3. (continued)

			-		Larger	Cheliped			
Cat. No. of	Sex	Body	Side	Total	Merus	Carpus	Carpus	\mathbf{Palm}	Dactylus
Specimen		Length		Leng.	Leng.	Leng.	Ht.	Leng.	Leng.
		mm		mm	mm	mm	mm	mm	шш
9083	۴0	32.0	ч	25.0	6.0	6.6	6.0	4.7	5.2
9084	۴0	31.0	R	24.0	5.7	5.8	5.9	5.5	4.0
9085	۴0	27.0	Ĺ	20.0	4.5	5.0	4.8	3.7	4.0
9086	₹0	23.0	R	15.0	3.8	3.8	3.8	3.8	2.7
9087	۴0	20.0	L	14.0	3.0	3.5	2.8	2.6	2.8
9088	۴0	33.5	L	27.0	6.5	6.8	6.8	6.3	5.1
9089	۴0		R	24.0	5.8	6.0	5.9	5.5	4.1
0606	۴0	27.0	Г	20.0	4.4	5.3	4.8	3.7	4.0
1000	۴0	27.0	R	21.0	5.0	5.1	4.8	5.0	3.8
9092	۴0	27.5	Γ	19.5	4.7	5.5	4.8	3.8	4.1
9093	\$ ovig.	29.5	Γ	16.0	3.3	4.0	3.0	3.3	3.0
9094	۴0	30.0	R	24.0	5.6	5.8	5.9	5.2	4.1
9095	۴٥	27.0	R	18.0	4.0	4.4	4.1	4.5	3.0
9606	۴0	31.0	R	23.0	5.4	6.0	5.7	4.1	4.5
2606	4 ovig.	25.0	Г	14.0	2.9	3.7	2.8	2.9	2.9
8606	۴0	32.5	Γ	23.0	5.2	6.2	5.8	4.2	4.8
6606	0+	30.0	Γ	15.5	3.2	4.2	3.2	3.1	3.0
0100	Fo	23.0	R	14.5	3.5	3.8	3.8	3.8	2.7
9101	۴0	33.0	L	23.0	5.8	5.8	6.0	5.8	4.1
9102	4 ovig.	32.0	Ч			ļ	I	I	
9103	۴0	21.0	Ч	15.0	3.5	3.8	3.5	3.5	2.5
9104	50	30.0	Ч	24.0	0.0	6.0	6.3	5.8	4.6
9105	*0	33.0	Ţ	26.5	6.2	7.0	6.2	4.8	5.3
9106	1 50	23.0	¥	14.5	3.2	3.9	3.3	2.9	2.9
9107	*0	36.0	L	28.5	6.7	7.9	6.9	5.0	6.0
9108	2 ovig.		Г	14.0	2.8	3.8	2.8	2.7	2.2
6016	۴0	34.0	R	27.0	6.7	7.8	6.9	4.9	5.6
9110	۴0	28.0	Г	21.0	4.9	5.4	4.9	3.9	4.1
9111	۴0	27.0	R	22.0	5.0	5.9	5.1	3.9	4.3
9112	0+	25.5	Γ	13.5	2.8	3.8	2.8	2.5	2.5
9113	۴0	32.0	L	23.0	5.8	6.3	6.0	4.5	5.0
9114	۴0	27.0	R	21.0	4.7	-5.7	4.8	3.9	4.1
9115	0+	24.0	Ļ	12.0	2.7	3.3	2.4	2.5	2.3
, 9116	۴0	31.0	R	25.0	5.8	. 6.0	6.0	5.7	4.3
9117	۴0	32.0	Ч	24.5	5.8	5.6	6.1	6.0	4.1
9118	4 ovig.	38.0	R	16.0	3.3	4.8	2.9	2.9	2.8
9119	۴0	29.0	R	23.0	5.5	6.3	5.3	4.4	4.7
9120	۴0	32.0	L	25.0	5.9	6.0	6.4	6.0	4.5
9121	*0	35.0	L	28.0	6.6	6.7	6.9	6.4	4.8
9122	۴0	31.0	L	25.0	5.9	6.0	6.2	5.8	4.4
9123	0+	24.0	R	13.0	2.7	3.7	2.2	2.3	2.5
9124	۴0	23.0	L	16.0	3.7	3.9	3.7	3.8	2.9
9125	۴0	29.0	Я	22.0	5.7	5.4	5.9	5.7	4.0
9126	۴0	34.0	Ч	26.0	6.0	6.8	5.7	6.0	4.5

240

Revision of Japanese Callianassids

Table 3. (continued)

				-	Larger	Cheliped			
Cat. No. of	Sex	Body	Side	Total	Merus	Carpus	Carpus	Palm	Dactylus
Specimen		Length		Leng.	Leng.	Leng.	Ht.	Leng.	Leng. mm
Q197	4	32.0	Ľ	26.0	5.9	7.2	6.1	4.5	5.2
9128	1 0 C	22.5	R	13.5	2.9	3.5	2.6	2.8	2.6
9129	+0 -	26.0	R	12.0	2.8	3.5	2.2	2.3	2.4
9130	. رد	32.0	R	25.0	5.9	6.2	6.2	5.9	4.7
9131) بر0	19.0	L	13.0	2.9	3.4	2.9	2.6	2.6
9132	ا يو ⁰	27.0	L	19.5	4.7	4.9	4.9	4.8	3.3
9133	+0	20.0	L	21.0	2.1	2.9	2.0	2.0	2.1
9134	♀ ovig.	29.0	L	15.0	3.0	4.1	2.8	2.8	2.8
9135	ډ0	22.0	Г	16.0	3.4	4.1	33	3.0	3.0
9136	0,	24.0	L	17.0	3.9	4.1	4.1	4.1	3.0
9137	♀ ovig.	28.0	R	14.0	3.0	3.9	2.5	2.7	2.7
9138	0,	28.0	R	20.5	4.9	5.2	5.1	4.9	3.7
9139	03	19.0	R	16.0	3.1	4.2	3.2	2.9	0 C
9140	♀ ovig.	25.5	n h	13.0	s 2.8	3.4 0	9 0 2.5	9 C.C	9 Q
9141	· Btao ±	0.07	לס	16.0	1 5	9 P.	30 I 20 I	3.9	2.7
9143	ю С	16.0	R ;	8.0	1.7	2.2	1.6	1.5	1.4
9144	. د0	24.0	R	18.0	4.1	5.0	4.2	3.7	3.6
9145	0,	30.0	R	24.0	5.5	5.8	5.9	5.8	4.0
9146	0, k	27.0	Ľ	20.0	5.0	5.1	5.0	4.9	4 3 0
9147	0,	29.0	R	24.0	5 5 5	6.5	0 0 0 0	7 4 1	4.0
9148	, O,		- ×	10.0	4 o.1	43	43	4	3
9149	0. Q	20.0 96.0	t	13.0 21.0	4.6	5.4	4.8	3.8	4.0
9151	، د	27.0	Г	20.0	4.9	5.0	5.1	4.8	4.0
9152	0,	25.0	L	19.0	4.2	5.0	4.5	3.6	3.9
9153	♀ ovig.	28.0	L	15.0	2.9	3.9	2.8	2.8	2.7
9154	0 ₃	18.0	R	11.0	2.3	3.0	2.5	2.4	1.8
9156	0,,	21.0	L	[2		5	5	1
9156	, O,	29.0	t F	26.0	6.1	2 0 .	э 0 л 1	2 A O	9 9
0150	О+ С	0.0 °	- 7	11.0	2.2 9.9	9.9	1.9	2.0	1.9
9159	+ k ^C	41.0	R	29.5	7.5	7.1	7.4	7.0	5.1
9160	0, (27.0	R	23.0	5.1	5.2	5.2	5.2	3.8
9161	0,4	19.0	R	13.0	2.8	3.2	2.8	0 12 70 0	2.1
9162	♀ ovig.	31.0	Ľ	15.0	3.1	4.0	2.8	2.9	0 2.9 9
9163	0,	19.0	R	14.0	3.0	a 3.4	3.1	ه د د د	э х.х л
9164	. Oy	20.0		14.5	3.0	0 J.J	۵.1 د ۵	4 J.J	л N Ю
9165	. 0 ₄	35.0	7	28.0	a 6.5	5.0 5.0	6.7 9.7	л f./	4 U 7 O
9166	د ۹	32.0	- 7	24.0	- 0 9.5	9 9 9	1.9	9.0 9.0	1.8
9167	y 0;	97 O		0 66 C.6	5.0 5.1	6.0 2.2	5.4	4.0	4.0
0160 8016	N O	27.0	R y	22.0	4.9	5.0	5.0	5.1	3.7
9170	C kC	25.0	г;	20.0	4.5	4.9	4.9	4.7	3.5
9171	0, 0	35.0	R	27.0	6.7	5.8	6.9	6.2	4.9
0111	C	00.0	;						

241

								Large	er (Chelipe	ed			
Cat. No. of	S	bex		Body	Side	 Total		Merus		Carus	р	Carpus	Palm	Dactylus
Specimen				Length		Leng.		Leng.		Leng.		Ht.	Leng.	Leng.
				$\mathbf{m}\mathbf{m}$		mm		$\mathbf{m}\mathbf{m}$		$\mathbf{m}\mathbf{m}$		$\mathbf{m}\mathbf{m}$	mm	$\mathbf{m}\mathbf{m}$
9172	-	ç.	ovig.	30.0	L	 15.5	-	3.2		4.1		2.8	2.9	2.9
9173		ç		21.0	L	11.0		2.1		2.9		2.0	2.0	2.0
9174		Ŷ		15.0	\mathbf{L}	8.0		1.8		2.2		1.4	1.5	1.7
9175	:	Ŷ		25.0	R	14.0		2.9		3.8		2.8	2.9	2.4
9176		3		29.0	R	24.5		5.5		5.9		5.9	5.6	4.1
9177		ð	Υ.	23.0	L	16.0		3.7		4.5		3.9	3.1	3.2
9178		Ŷ		27.0	R	14.5		3.0		3.7		2.8	2.9	2.3
9179		б		26.0	R	22.0		4.6		4.9		4.9	4.5	4.7
9180		Ŷ	ovig.	25.0	R	14.5		3.0		3.5		2.5	2.7	2.5
9181		б		20.0	L	14.0		3.1		3.7		3.1	3.3	2.6
9182		3		28.0		_		-				<u> </u>		-
9183		3			L	13.0		2.8		3.1		2.9	3.0	2.1
9184		ð		30.0	R	24.0		6.0		6.0		6.2	6.0	4.5
9185		ð		24.0	L	18.0		3.8		4.3		4.3	3.2	3.7
9186		ð		24.0	L	19.0		4.5		4.7		4.5	4.6	3.2
0107				90.0	т	92 0				5.2		57	5.9	4.0
9187		ර 1		30.0		23.0		5.5 7.0		0.0 7.6		0.7 7.0	- 3.4 7.9	4.0
9188		റ്		30.0	L .	92.0		7.8		7.0 C E		7.9 C 5	7.4 6.5	0.0
9189		റ്		33.0		28.0		0.0		0.5		0.5	. 0.0	4.0
9190		Q		35.0	ւ 1	32.0		1.8		1.3		7.9	1.4	0.9
9191		ð		27.0	L	19.0		4.2		4.5		4.0	- 4.5	5.0
9192		8		36.0	R	33.0		8.0		9.0		8.3	- 5.9	. 0.4
9193		5		33.0	R	28.0		6.8		/.8		6.9	5.3	6.0
9194		ð		36.0	R	30.0		7.0		8.7		7.2	5.0	6.0
9195		δ		30.0	L	25.0		6.0		6.9		6.2	4.6	5.1
9196		ð		44.0	L	31.0		- 7.5		8.0		8.0	6.0	6.0

3.0

4.7

3.1

3.3

3.3

3.8

3.0

3.2

3.1

4.0

5.2

4.1

4.5

4.0

5.5

3.9

4.1

4.0

2.8

5.0

3.0

3.0

3.4

3.8

2.9

3.2

3.0

Table 3. (continued)

Ŷ

ð

Ŷ

q

 δ

6 9

ç

ç

26.0

27.0

29.5

29.0

22.0

30.0

28.0

31.0

30.0

 \mathbf{L}

 \mathbf{L}

R

R

R

 \mathbf{L}

R

 \mathbf{L}

 \mathbf{L}

14.0

19.0

15.5

16.0

14.0

.19.0

14.5

16.0

15.0

9197

9198

9199

9200

9201

9202

9203

9204

9205

2.9

4.1

2.6

3.0

3.0

3.6

2.9

3.0

2.9

2.8

3.8

2.8

3.1

3.0

3.1

2.9

3.1

2.9

					Larger	Cheliped			
Cat. No. of Specimen	Sex	Body Length mm	Side	Total Leng. mm	Merus Leng. mm	Carpus Leng. mm	Carpus Ht. mm	Palm Leng. mm	Dactylus Leng. mm
1001	ð	43.0	R	37.0	8.7	9.1	6.6	9.7	6.4
1002	ਹੈ .	51.0	R	38.0	8.4	11.2	6.2	7.9	6.5
1003	3	38.0	R	31.5	6.9	8.5	6.0	7.0	5.8
1005	3	45.0	·				_	 ,	
1006	\bigcirc ovig.	50.0	R	32.0	7.0	8.6	5.9	6.9	5.8
1007	♀ ovig.	44.0							<u> </u>
1008	$\stackrel{\circ}{\downarrow}$ ovig.	38.0	R	· ·		_		_	. —
1009	$\stackrel{\circ}{\downarrow}$ ovig.	34.0				_	_		
1010	Ŷ.	34.0	·		°	·		_	
1011	3	46.0	R	40.0	9.1	8.4	7.1	11.0	-6.5
1012	3	41.0	R	33.0	7.0	7.8	6.1	8.3	5.2
1013	3	35.0	_						
1014	5	32.0	L	:		· ·			-
1015	Ŷ	52.0		·					······.
1016		_	R	T	7.6	10.0	5.9	7.1	5.5
1017	·		L		4.9	5.0	4.4	5.8	4.0
1018	·		\mathbf{L}	21.5	5.0	5.5	4.2	5.0	4.0
1019	<u> </u>		\mathbf{L}	_	4.5	4.9	4.1	5.0	3.8
2001	ේ ඒ විට	35.0			· •	· <u>- </u>	. —		
3001	రే	31.0	\mathbf{L}	26.0	6.0	5.5	4.9	8.0	4.4
3002	ç .	37.0	R	27.5	6.1	7.0	4.8	6.1	4.9
3003	3	18.0	\mathbf{L}	12.0	2.6	2.5	2.3	3.4	2.0
3004	$\stackrel{\circ}{_{\sim}}$ ovig.					<u> </u>	·		-
9001	ð 1	41.0	L	33.0	7.6	6.5	6.4	9.9	5.9
9002	$\stackrel{\circ}{\downarrow}$ ovig.	48.0	R	31.5	6.8	7.8	6.2	7.1	5.5
9003	Q ovig.	37.0	\mathbf{L}	28.0	5.8	7.0	5.1	5.9	4.9
9004	\bigcirc ovig.	35.0	R	24.0	5.2	5.9	4.7	5.7	4.7
9005	$^{\circ}$ ovig.	32.0	R	24.0	5.1	5.8	4.3	5.4	4.5
9006	\mathcal{Q} ovig.	28.0	\mathbf{L}				_		· <u>··</u>
9007	Ŷ	25.0	L	18.0	3.9	4.1	3.6	4.4	3.6
9008	ð	34.0	L	31.0	6.9	7.1	5.3	8.7	5.5
9009	3	32.0	L	28.0	6.4	6.3	5.3	7.7	4.8
9010	ð	39.0	R	33.0	7.1	8.2	6.0	7.8	5.8
9011	ç ç	38.0	L	20.0	4.1	4.7	3.7	4.2	4.0
9012	Ŷ	35.0	L	27.5	6.0	6.5	5.4	6.7	5.5
9013	3	37.0	R		_		<u> </u>		—

Table 4. Measurements of *C. petalura*, body length, length of larger cheliped and dimension of its respective parts; merus length, carpus length and height, palm length and dactylus length.

					Larger	Cheliped			
Cat. No. of Specimen	Sex	Body Length mm	Side	Total Leng. mm	Merus Leng. mm	Carpus Leng. mm	Carpus Ht. mm	Palm Leng. mm	Dactylus Leng. mm
9014	0	10.0					· · · · · · · · · · · · · · · · · · ·		
9015	+	14.0	Τ.	8.0	1.8	1.9	1.7	21	1.9
9016	0	20.0	T.	10.5	2.0	2.3	1.8	2.1	2.0
9017	+	10.5	R	6.5	1.5	1.6	1.0	1.5	11
9018	3	16.5	I.	9.0	-2.0	2.1	1.6	2.1	19
9019	3	35.5	R	27.5	6.1	7.1	4.9	6.0	4.8
9020	ę	33.0	L	21.0	4.8	5.1	4.2	5.0	4.5
9021	Q T	33.0	R	19.5	4.0	4.5	3.8	4.5	4.0
9022	° ovig	29.0	R	17.0	3.7	4.1	3.3	4.1	3.5
9022	0 + 0 + 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	39.0	T.	24.0	5.1	5.4	4.5	5.5	4.6
9024	+ .2		R	33.0	7.5	8.0	6.0	9.0	5.8
9025	¢ O	34.0	I.	24.0	5.2	5.8	4.5	5.8	4.9
9026	+	40.0	R	34.0	7.9	8.0	6.4	8.2	6.9
9023	0 .4	39.0	I.	36.0	8.1	9.7	6.5	8.3	6.8
9028	0	25 0	T.						
9029	+	39.0	T.	32.5	7.4	7.0	6.0	89	5.8
9030	3	27.0	T.	22.5	4.9	5.3	4.3	5.9	4.1
9031	3	44 0	T.	36.0	8.5	9.1	6.9	8.6	6.5
9032	<u>.</u>	33.0	T.	28.5	6.0	6.3	53	7.4	49
9033		24.5	T.	19.0	4.3	43	3.8	49	39
9034	3 ·	35.0	R	34.0	7.3	8.0	6.2	9.0	5.3
9035	0	28.0	R	22.0	49	5.3	4 4	53	44
9036	+	33.0	L	25.0	5.5	5.8	5.0	7.0	43
9037	0	34.0	R	21.0	47	5.0	44	49	4.2
9038	+	38.0	T.	22.0	7.0	75	59	8.6	5.2
9039	J	31.0	T.	23.0	5.6	5.8	49	6.6	39
9040	· Q .	33.0	T.	21.0	4.8	5.0	4.1	5.0	4.0
9041	+	35.0	R						
9042	ç	40.0							
9043	• • •	34.0	R	18.0	3.7	4.8	3.3	3.7	33
9044	¢	30.0	R	21.0	4.2	4.9	4.0	4.9	4.1
9045	÷ đ	36.0	T.	33.0	7.8	8.9	6.2	7.8	5.6
9046	Q	30.0	Ĺ	22.5	2.8	5.7	4.6	5.2	4.2
9047	Ŷ	33.0	R	25.0	5.2	6.7	4.5	5.5	4.7
9048	Ŷ	38.0	R	25.0	5.5	6.1	4.7	5.9	4.9
9049	$\stackrel{\circ}{\downarrow}$ ovig.	33.0	L	16.0	3.1	5.0	2.2	2.9	2.8
9050	ੱ	31.0	R	24.0	5.3	6.2	4.6	5.7	4.8
9051	ਹੈ	19.0	L	13.5	2.8	3.0	2.8	2.6	2.9
9052	ð	37.0	L	35.5	8.1	8.4	6.8	9.5	5.8
9053	\bigcirc ovig.	30.0	R	23.0	5.2	6.0	4.7	5.3	4.4
9054	ð	31.0	R	25.0	5.8	6.0	5.1	7.0	4.2
9055	ੰ	30.0	R	24.0	5.1	5.1	4.8	6.2	4.1
9056	ੇ	26.0	R	20.0	4.4	5.1	4.1	5.0	4.0
9057	$\stackrel{\circ}{_{\sim}}$ ovig.	29.0	L	. 22.5	4.8	5.3	4.4	5.3	4.5

Table 4. (continued)

Table 4. (continued)

	Dactylus	Leng.		I	4.5	4.4	-	[3.4	3.9	ŀ	4.0	4.1		3.0	I	4.8	4.7	3.0	3.6	4.0	6.9	7.0	4.0	4.6	3.9	6.0		2.9	6.8	5.8	4.5	4.3	2.0	4.0	3.2		[I
	Palm	Leng.		7.0	4.9	6.3	l	-	4.1	5.2	!	4.8	4.8		3.9	2.9	5.7	5.5	3.9	3.3	5.3	10.8	8.6	5.3	5.4	4.7	9.1		3.8	10.7	10.0	7.1	6.3	2.1	5.8	3.7	-		
	Carpus	Ht. mm	11111	4.8	4.1	4.9			3.2	4.4		4.0	4.1	l	3.0	2.3	5.0	4.5	3.0	3.8	4.0	7.5	7.2	4.0	4.3	3.9	6.4	I	2.9	7.5	7.5	4.9	4.7	1.9	4.5	3.2	www.		
Cheliped	Carpus	Leng.	111111	6.0	5.9	5.7	1	l	4.0	4.6	1	5.0	5.9	1	3.7	2.7	5.9	5.5	3.2	4.2	4.5	10.8	11.7	4.9	5.1	4.3	7.8	1	3.3	10.0	9.5	6.1	6.1	3.0	5.3	3.9		ſ	******
Larger	Merus	Leng.		5.8	4.8	5.1	1	[3.7	4.8		4.5	4.8		3.3	2.7	5.2	5.0	3.2	4.0	4.3	9.2	9.5	4.8	4.9	4.1	7.8		3.2	9.2	8.8	6.0	5.7	2.1	5.0	3.5			
	Total	Leng.	171111	25.0	23.0	24.0	I	l	17.0	19.0	I	20.0	21.0		16.0	11.0	24.0	22.0	15.0	18.5	20.0	43.0	41.0	21.0	23.0	19.0	32.0]	15.0	41.5	37.5	26.0	25.0	11.0	22.0	15.0]		
	Side			Ļ	ч	Г	ч	Г	L	Ч	Г	R	L	Ч	К	L	L	Я	R	L	Г	Г	Я	Я	Г	Γ	Я	Г	Ч	Г	L	К	R	Γ	Ч	R	R	Г	
;	Body	Length	IIIII	30.0	35.0	30.0	30.0	34.0	24.0	27.0	23.0	28.0	27.0	33.0	26.0	16.0	31.0	31.0	23.0	25.0	28.0	44.0	46.0	28.0	35.0	28.0	40.0	38.0	21.0	41.0	40.0	31.0	37.0	23.0	27.0	24.0	40.0	33.0	24.0
	Sex			۴0	♀ ovig.	50	۴0	♀ ovig.	01+	۴0	♀ ovig.	Q ovig.	0+	٢0	9 ovig.	0+	4 ovig.	2 ovig.	povig.	о+	50	۴٥	۴c) 어	• 04	0 1	۴0	۴0	۴0	۴0	٢0	⁶ 0	avig.	0+	۴0	۴0	۴0	^K O	۴0
	Cat. No. of	Specimen		9058	9059	0906	9061	9062	9063	9064	9065	9066	9067	9068	6906	9070	9071	9072	9073	9074	9075	9076	9077	9078	6/06	9080	9081	9082	9083	9084	9085	9086	9087	9088	9089	0606	1606	9092	9093

K. Sakai

	Form	n of	Mala Individual	Female Individual	
	Dactylus	Propodus	wate mutvidual	Female Individual	
	· 1	1		9143 9147	
	2	1	9011	9014 9173	
t in		2a	7014 9202	9133 9134 9162 9197	
		2b	9161	7018 9045 9058 9063	
				9067 9072 9078 9093	
				9097 9108 9112 9115	
				9118 9123 9129 9137	
				9140 9153 9157 9158	
				9172 9175 9180 9199	
				9203 9205	
		3a	9139	9178	
		3h	5105	9128	
		49	9167 9154	5140	
		6a -	9087 9106 9131 9177		
		04	5007 5100 5151 5177		
	3	1	· · · · · · · · · · · · · · · · · · ·	9043	
		2a	7004 7013 7019 9022	9009	
		2b	7009 9135	3008 7008 7011 7017	
				7021 7023 9006 9015	
				9026 9031 9044 9075	
				9141 9200 9204	
		3a		7012 9012 9019 9023	
				9080	
		3h	7005 7010 9010 9046	1002 1003 3003 3004	
			9051	7024 9003 9016 9018	
				9024 9025 9027 9038	
				9052 9099	
		62	9152	500 H 5000	
		ou			
	4	6a -	3002 7106 7025 7026		
			9056 9059 9069 9085		
			9092 9110 9127 9196		
			9198 9201		
		6ь	9083 9119		
		6c	9055 9144 9147 9150		
			9165		
		7a	9057 9066 9098 9114		
			9185		
		7c	9156		·
	4'	6a	9090		
	±	6b	9194		
•		7b	9071 9107 9168 9192		
		70	0062 0064 0006 0100		
		/0	0111 0105		
			9111 9195		

Table 5. Distribution of the morphological variations of the larger cheliped among the material of *Callianassa japonica* ORTMANN. specimens are given by catalogue numbers.

-

. We

Revision of Japanese Callianassids

Table 5. (continued)

	For	n of	Mala Individual	Formale Ind	inidual	
	Dactylus	Propodus	wate mainiqual	Pennale Ind	ividua1	
1.0	5	6a	9041	· · · ·		
		7b	7027 9053 9065 9070			
			9073 9105 9192			
		7c	7022 9079 9113			
	6	7b	9049	s.		
	7	5c	1001			
		7b	9021			
	8	4b	9036			
		5b	9163 9164 9183			
	9	4b	9029 9047			
		5a	9037			
	10	4b	9013 9035 9039 9181			
		5a	9081			
		5b	9086 9094 9100 9103			
			9124 9136 9142 9186			
			9191			
	11	4b	9054			
		5b	7001 9089 9095 9121			
			9149 9169 9170 9179			
	12	4b .	7015			
		5a	9082 9084 9117 9122			
			9125 9130 9145 9146			
			9160			
		5b	9060 9061 9068 9077			
			9088 9091 9104 9116			
			9132 9138 9151 9159			
			9166 9176 9184 9187			
			9188			
		5c	9017 9034 9048 9148			
	13	4b	3001			
		5a	9001 9101			
		5b	9120 9126 9171 9189			
		5c	9033 9190			
	14	5a	9076			
		5b	9002 9007 9028 9050			

247

K. Sakai

	Form of		N.		G 114
Dactylus	Propodus	Fixed Finger	Male Individual	Female Individual	Undetermined
1	1	1	9018	9016 9049 9088	Anne -
	2a	1		9043	
	2b	1	9017	9021 9022 9040	
	2c	1		1006 9004 9011 9020	
				9044 9046 9047 9048	
				9059 9069 9072 9073	
	2d	1	1002 1003 9019 9027	9003 9005 9007 9023	1016
			9050 9056 9077 9090	9025 9035 9037 9053	
				9057 9063 9036 9067	
				9071 9079 9080	
	2d	2	9031	3002	
	2d	3			
	3b	1	9015		
	3c	1	9051		
	3d	3			1019
0	9.	1		0002	
2	Za 20	1	9010	9002	
	2C 2d	1	9010	9007	
	20 2d	1 7	9026	5012 5074	1018
	2d 2d	3	5020		1017
	20	5			1017
3	3c	1	9083		
	3c	2	9033	9078	
	0	2	0001 0075	.:	
4	3c	3	9064 9075		
	3c	х	1001		
5	3b	3	9089		
0	3d	3	3001 3003 9001 9029		
6	3a	3	9039		
** 7	0 -	0	0050		
Х	за	3	9030		
6	3b	3	9030		
	3c	3	9036		
	3d	3	9054 9060		
7	3c	3	9008 9009 9024 9032		
			9034 9038 9052 9055		
			9076 9081 9084 9085		
	a :	~	9086		
	3d	3	1011 1012	0 1/10 0.5 0.84	

 Table 6.
 Distribution of the morphological variations of the larger cheliped among the material of Callianassa petalura STIMPSON.

 Specimens are shown by catalogue numbers.

Sex	Cat. No.	Body Length mm	Carapace Length mm	Length of Larger cheliped mm
	3002	40.5	10.0	16.8
	7015	40.0	9.0	17.5
	7016	39.5	9.2	19.5
	9001	38.0	8.5	19.5
Male	9037	41.0	9.0	17.0
	9039	40.0	9.7	17.0
	9046	40.0	9.0	15.5
	9070	38.0	9.0	20.0
	9159	41.0	9.0	18.5
	7011	40.0	9.5	14.5
	7021	39.5	8.9	13.5
	7023	39.0	8.6	12.5
Female	9006	40.5	9.5	12.0
	9009	38.0	9.0	12.0
	9031	40.0	9.0	13.0
	9045	38.0	8.5	12.5
	9118	38.0	7.0	9.8

Table 7. The carapace length and the length of the larger cheliped from carpus to dactylus in *C. japonica*.

 Table 8. The carapace length and the length of the larger cheliped from carpus to dactylus in C. petalura.

Sex	Cat. No.	Body Length mm	Carapace Length mm	Length of Larger cheliped mm
	1003	38.0	8.8	20.0
	1012	41.0	9.5	19.5
	9001	41.0	10.0	21.0
	9010	39.0	9.0	21.0
	9026	40.0	9.0	21.0
Male	9027	39.0	9.0	23.5
	9029	39.0	9.8	20.0
	9038	38.0	8.5	20.5
	9081	40.0	8.9	21.0
	9084	41.0	10.3	26.5
	9085	40.0	9.5	24.0
	3002	37.0	9.0	17.0
Female	9011	38.0	7.9	12.2
	9023	39.0	8.9	14.5
	9048	38.0	7.8	16.0

SD.	Locality	Dactylus	α t (Palm>	ype Carpus)	(Pa	β trained	ype Carpus)	γ ty (Palm <	vpe Carpus)
55.	iocunty		ර	ę .		ే	Ŷ	రే	Ŷ
	Other	Α	0	0		0	0	2	3
	loc. than	В	0	0		2	1	18	29
0.1.1.1	Amakusa	С	19	0		1	0	0	0
G. japonica		A	0	0		0	0	9	33
	Amakusa	В	0	0		0	0	44	6
		\mathbf{C}	7	0		11	0	37	0
C. petalura	Around	Α	2	10		1	8	13	21
-	Japan	В	30	1		1	0	0	0

Table 9. Individuals of respective dactylus forms in relation to the length proportion of carpus to palm.

EXPLANAT	ION OF	PLATES	IX-XV
----------	--------	--------	-------

PLATE IX.	The	larger	cheliped	of	C. japonica.
-----------	-----	--------	----------	----	--------------

- a. A female from the estuary of the Muromi River, Hakata Bay, Cat. No. 9026, showing the form D3–P2b.
- b. A male from the estuary of the Tatara River, Hakata Bay, Cat. No. 9015, showing the form D3-P2b.
- c. A male from Kanazawa-hakkei, Tokyo Bay, Cat. No. 3002, showing the form D4– P6a.
- d. A male from the estuary of the Ohta River, Hiroshima, Cat. No. 7016, showing the form D4-P6a.

PLATE X. The larger cheliped of C. japonica.

- a. A male from Higashihama Beach, Amakusa I., Cat. No. 9065, showing the form D5-P7b.
- b. A male from the estuary of the Ohta River, Cat. No. 7027, showing the form D5– P7b.
- c. A male from Funka Bay, Hokkaido, Cat. No. 1001, showing the form D7-P5c.
- d. A male from Momoji Beach, Hakata Bay, Cat. No. 9021, showing the form D7– P7b.

PLATE XI.

- XI. The larger cheliped of C. japonica.
 - a. A male from the estuary of the Muromi River, Hakata Bay, Cat. No. 9036, showing the form D8–P4b.
 - b. A male from the estuary of the Muromi River, Cat. No. 9035, showing the form D10-P4b.
 - c. A male from Higashihama Beach, Amakusa I., Cat. No. 9086, showing the form D10–P5b.
 - d. A male from Higashihama Beach, Cat. No. 9122, showing the form D12-P5a.

PLATE XII. The larger cheliped of C. japonica.

- A male from Kanazawa-hakkei, Tokyo Bay, Cat. No. 3001, showing the form D13– P4b.
- b. A male from Higashihama Beach, Amakusa I., Cat. No. 9126, showing the form D13-P5b.
- c. A male from the estuary of the Muromi Beach, Hakata Bay, Cat. No. 9033, showing the form D13-P5c.
- d. A male from Najima Beach, Hakata Bay, Cat. No. 9007, showing the form D14-P5b.

PLATE XIII. The larger cheliped of C. petalura.

- a. A female from Tsuyazaki Beach, Fukuoka, Cat. No. 9020, showing the form D1-P2c-F1.
- b. A male from Shiriki-shinai, Hokkaido, Cat. No. 1003, showing the form D1-P2d-F1.
- c. A male from Shiriki-shinai, Cat. No. 1002, showing the form D1-P2d-F1.
- d. A male from Tsuyazaki Beach, Cat. No. 9027, showing the form D1-P2d-F1.

PLATE XIV. Th

- The larger cheliped of C. petalura.
- a. A male from Tsuyazaki Beach, Fukuoka, Cat. No. 9031, showing the form D1-P2d-F2.
- b. A female from Tsuyazaki Beach, Cat. No. 9078, showing the form D3-P3c-F2.
- c. A male from Tsuyazaki Beach, Cat. No. 9064, showing the form D4-P3c-F3.
- d. A male from Okinoshima I., Fukuoka Pref., Cat. No. 9001, showing the form D5-P3d-F3.

PLATE XV.

7. The larger cheliped of *C. petalura*.

- a. A male from Tsuyazaki Beach, Fukuoka, Cat. No. 9029, showing the form D5-P3d-F3.
- b. A male from Tsuyazaki Bcach, Cat. No. 9030, showing the form of D6-P3b-F3, showing the form D6-P3b-F3.
- c. A male from Tsuyazaki Beach, Cat. No. 9076, showing the form D7-P3c-F3.
- d. A male from Tsuyazaki Beach, Cat. No. 9081, showing the form D7-P3c-F3.

Publ. Seto Mar. Biol. Lab., XVII (4), 1969. PLATE IX

j

07A

đ

Publ. Seto Mar. Biol. Lab., XVII (4), 1969. PLATE X

j 8

Publ. Seto Mar. Biol. Lab., XVII (4), 1969. PLATE XI

. J&

Publ. Seto Mar. Biol. Lab., XVII (4), 1969.

K. SAKAI: Revision of Japanese Callianassids

j ð

Publ. Seto Mar. Biol. Lab., XVII (4), 1969. PLATE XIII

S park op to

q

7 3

5 th

5

8 9

Publ. Seto Mar. Biol. Lab., XVII (4), 1969. PLATE XIV

K. SAKAI: Revision of Japanese Callianassids

Publ. Seto Mar. Biol. Lab., XVII (4), 1969. PLATE XV

K. SAKAI: Revision of Japanese Callianassids

Î