THE STATUS OF THE HIPPOLYTID SHRIMP
GENERA BARBOURIA AND LIGUR
(CRUSTACEA: DECAPODA): A REEVALUATION

Raymond B. Manning and C. W. Hart, Jr.

Abstract.—The genera Barbouria and Ligur are considered to be monotypic. Parhippolyte is removed from the synonymy of Ligur, and a new genus, Janicea, is recognized to receive Barbouria antiguensis Chace. These four genera and Somersiella comprise a homogeneous grouping of five monotypic genera within the Hippolytidae.

The status and relationships of the hippolytid shrimp genera Barbouria Rathbun and Ligur Sarato have long puzzled students of these shrimps. Until now, each of these genera contained two species: one in marine and subtidal habitats and one anchialine, confined to land-locked saltwater caves and pools. Holthuis (1963: 272–277) remarked that Barbouria resembled Ligur “in almost every detail” (p. 272). In features “like the shape of the mandibular palp, with the long last joint, the long and slender legs, the multiarticulate carpus of the second pereiopods and the arrangement of antennal and branchiostegal spines on the carapace, there is the closest resemblance between Ligur and Barbouria” (p. 277).

Chace (1972) described a second species of Barbouria. He remarked (p. 110) that Holthuis’ observations were strengthened by the finding of B. antiguensis, and concluded “It is possible that Barbouria eventually will be relegated to the synonymy of Ligur or perhaps that Barbouria will revert to its previous monotypic status and that B. antiguensis will be transferred to Ligur.” In his account, he noted that B. antiguensis agrees with B. cubensis [and differed from species of Ligur] in lacking arthrobranchs on the pereopods, but differs in having the carpus and propodus of the third to fifth pereopods multiarticulate and in having a terminal cluster of coupling hooks on the endopod of the first pleopod of the male. Further, although Ligur uveae has prominent arthrobranchs on the pereopods, it agrees with B. antiguensis in having a multiarticulate propodus on the walking legs as well as terminal coupling hooks on the endopod of the first male pleopod.

In 1977 Buden and Felder reported that although the coupling hooks are absent in some specimens of B. cubensis from Providenciales, they are present in others. They concluded (p. 111) that “The presence of these coupling hooks in both species of Barbouria is further evidence that this genus and Ligur are closely allied and increases the likelihood that Barbouria will eventually be placed in synonymy of Ligur.”

The status of the two species assigned to Ligur also has been questioned by some authors. Ligur was established in 1885 for a deep water species from the Mediterranean, L. edwardsii Sarato, a species previously described by Risso (1816) as Palaemon ensiferus (see Holthuis 1977:50, for an historical account of this species). A second species, L. uveae (Borradaile), originally described in the mono-
typic genus *Parhippolyte* by Borradaile (1899), was transferred to *Ligur* by Kemp (1914:83, 122, 123), without comment. Gordon (1936) presented some observations on the two species of *Ligur*, and commented (p. 102) that "*L. uveae* was first recorded from the Loyalty Islands and briefly described by Borradaile, who, however, omitted to mention that the propodi of the slender walking legs are multiarticulate. This omission was later made good by the same author when he recorded the species from Aldabra in the western Indian Ocean. But he did not mention that, in having the propodi of peraeopods 3–5 segmented, *Ligur uveae* is unique amongst the Caridea."

Monod (1968), in recording additional material of *L. uveae* from the Loyalty Islands, commented on the differences between the two species then assigned to *Ligur*, and remarked (p. 777):

"Bien des détails sont comparables ou identiques chez les 2 espèces, par exemple les pléopodes 6, mais la différence dans les péréiopodes est très importante (P 3–5 à propode segmenté dans *L. uveae*, simple dans *L. ensiferus*).

"Cette différence est-elle ou non de valeur généérique, ou, au moins, sub-générique? Je n’ai pas l’intention d’en décider ici et préfère, pour le moment, suivre l’opinion des divers auteurs (BORRADAILE, KEMP, GORDON, HOLTHUIS) qui ont tenu les deux espèces pour congénériques. Au cas où la multi-articulation du propode P 3–5, unique chez les Crevettes comme le rappelait GORDON (1936), se verrait attribuer une valeur supra-spécifique, le taxon *Parhippolyte* Borradaile, 1900 [sic] reste, évidemment, disposé.

"Peu après d’ailleurs, CALMAN (1939:210), après avoir signalé la présence de *Ligur edwardsii* dans la région des Maldives, suggérait que *Ligur uveae* pourrait bien être généricement distinct de *L. edwardsii*; *L. uveae* redeviendrait dans ce cas *Parhippolyte uveae* Borradaile. Je n’ai pas cru pourvoir aller encore jusque là, mais quand les plus nombreux spécimens des deux espèces, *ensiferus (=edwardsii)* et *uveae* seront connus, l’éventualité d’une séparation des deux genres est nullement à écarter."

Thus each of these two genera was considered to contain two species, one marine, one anchialine, one with normal walking legs, one with the carpus and/or propodus of the walking legs multiarticulate. In *Barbouria*, the species with multiarticulate walking legs was marine, the other confined to anchialine habitats. In *Ligur* the species with multiarticulate walking legs was anchialine, the other living in the open sea.

The discovery of a fifth species in this complex, described as new by us (Hart and Manning 1981) and assigned to the monotypic genus *Somersiella*, and the subsequent discovery of *Barbouria antiguensis* in a marine cave in Bermuda (Iliffe, Hart, and Manning 1983), has prompted us to reevaluate the species of *Barbouria* and *Ligur* as part of our long-term studies of the anchialine shrimps of Bermuda. We consider the grouping of species in *Barbouria* and *Ligur* to reflect poorly at best the relationships of the four species involved; it seems to us highly unlikely that multiarticulate segments on the walking legs would evolve independently in different members of each of two genera. We have already noted (1981:446) that "We suspect that *B. antiguensis* should be referred to a new genus." In our opinion the multiarticulate walking legs, in combination with other characteristics of the species of *Barbouria*, *Ligur*, and *Somersiella*, must be considered as generic characters.
Here we present the results of our examination of material of each of these species. We remove *Parhippolyte* from the synonymy of *Ligur*, and we assign *Barbouria antiquensis* to a new genus. Thus, in this complex of closely related shrimps, we recognize five monotypic genera: *Barbouria*, containing only *B. cubensis*; *Janicea*, new genus, containing *Barbouria antiquensis*; *Ligur*, with *L. ensiferus*; *Parhippolyte*, with *P. uveae*; and *Somersiella*, with *S. sterreri*.

Accounts of the Genera

Barbouria Rathbun, 1912

Fig. 1

Barbouria Rathbun, 1912:455. (Type-species *Barbouria poeyi* Rathbun, 1912, a subjective junior synonym of *Hippolyte Cubensis* von Martens, 1872, by original designation and monotypy). Gender feminine.

Habitat.—Anchialine caves and sinks.

Janicea, new genus

Fig. 2

Type-species.—*Barbouria antiquensis* Chace, 1972.

Etymology.—We consider it appropriate to dedicate this genus to Janice Chace, who has provided encouragement for her husband, Fenner A. Chace, Jr., throughout a career spanning more than five decades.

Habitat.—Marine, sublittorally on seawalls or in marine caves.

Distribution.—Western Atlantic: Antigua and Bermuda (Chace 1972; Iliffe, Hart, and Manning 1983).

Definition.—Carapace with antennal and branchiostegal spines. Rostrum slender, about 5 times longer than high, but short, extending about to end of basal segment of antennular peduncle, with 3–4 dorsal (1–2 postorbital) and 1 ventral teeth. Eyes pigmented, cornea broader than stalk. Anterior 4 abdominal pleura rounded, fifth acute posteroventrally with posteroventral corner produced into
Fig. 1. *Barbouria cubensis* (von Martens): *a*, Animal in lateral view (from Hobbs, Hobbs, and Daniel 1977: fig. 33); *b*, Gill complement (*b* from a specimen from San Salvador, Bahamas, USNM 181659).

Ligur Sarato, 1885

Fig. 3

Ligur Sarato, 1885:2. (Type-species *Ligur edwardsii* Sarato, 1885, a subjective junior synonym of *Palaemon Ensiferus* Risso, 1816, by monotypy). Gender masculine.
Janicea antiquensis (Chace): a, Animal in lateral view; b, Rostrum (from Chace 1972: fig. 40b); c, Gill complement (a and c from paratypes from Antigua, USNM 135376).

Habitat.—Marine, sublittoral in ca. 300 to 772–860 meters.

Distribution.—Western Indian Ocean, western Mediterranean, northeastern Atlantic off the Cape Verde Islands and Senegal (Crosnier and Forest 1973), and western Atlantic, Cay Sal Bank (Lemaitre 1983).

Definition.—Carapace with antennal and branchiostegal spines. Rostrum slender, length about 5 times depth, long, overreaching antennular peduncle, extending almost to apex of antennal scale, with 3–4 dorsal (1 postorbital) and 4–5 ventral teeth. Eyes pigmented, cornea broader than stalk. Anterior 4 abdominal pleura rounded, pleura of fifth and sixth segments with posterovertral corner produced into spine. Telson with 2 pairs of dorsal spines and 2 pairs of terminal spines, outer longer. Epipods (7): present on all maxillipeds and anterior 4 pereopods. Pleurobranchs (5): present on all pereopods. Arthrobranchs (6): present on third maxillipeds (2) and 1 each on anterior 4 pereopods. Podobranch (1): on second maxilliped. Mandible lacking incisor process, with 3-jointed palp. Pereopods 1 and 2 chelate; merus, carpus, and propodus of second leg multiarticulate. Pereopods 3–5 with merus, propodus, and carpus undivided. Structure of endopod of first and second pleopods of male unknown to us.

Parhippolyte Borradaile, 1899

Parhippolyte Borradaile, 1899: 414. (Type-species Parhippolyte uveae Borradaile, 1899, by monotypy). Gender feminine.
Fig. 3. *Ligur ensiferus* (Risso): a, Animal in lateral view (from Senna 1902: pl. 17, fig. 1); b, Rostrum (from Gordon 1936: fig. 2a); c, Gill complement; d, Pleurobranch partly removed to show second arthrobranch on third maxilliped. (c and d from specimen from Sicily, USNM 152112).

Habitat.—Anchialine pools.

Distribution.—Indo-West Pacific, from scattered localities between western Indian Ocean and Hawaii (Holthuis 1973; Wear and Holthuis 1977; Maciolek 1983).

Definition.—Carapace with antennal and branchiostegal spines. Rostrum broad, length about 2.5 times depth, short, reaching to or beyond base of second segment of antennular peduncle, with 3 dorsal (2 postorbital) and 1–6 ventral teeth. Eyes pigmented, cornea broader than stalk. Anterior 3 abdominal pleura unarmed, pleura of fourth to sixth segments with posteroventral corner produced into spine. Telson with 3 pairs of dorsal spines, 1 subterminal, and 2 pairs of terminal spines, outer longer. Epipods (7): present on all maxillipeds and anterior 4 pereopods. Pleurobranches (5): present on all pereopods. Arthrobranches (6): present on third maxilliped (2) and 1 each on anterior 4 pereopods. Podobranch (1): on second maxilliped. Mandible lacking incisor process, with 3-jointed palp. Pereopods 1 and 2 chelate; merus, carpus, and propodus of second leg multiarticulate. Pereopods 3–5 with propodus multiarticulate. Endopod of first pereopod of male without appendix interna but with distal coupling hooks. Endopod of second pleopod of male with appendix masculina shorter than appendix interna.
Fig. 4. *Parhippolyte uveae* (Borradaile): *a*, Animal in lateral view (from Borradaile 1899: pl. 38, fig. 11a; propodi of walking legs erroneously shown to be undivided); *b*, Front (from Monod, 1968: fig. 1); *c*, Gill complement; *d*, Carpus, propodus, and dactylus of fifth pereopod. (*c* and *d* from specimen from Bikini Atoll, USNM 95043).

Somersiella Hart and Manning, 1981

Fig. 5

Habitat.—Anchialine caves.

Distribution.—Western Atlantic: Bermuda (Hart and Manning 1981).

Definition.—Carapace with antennal and branchiostegal spines. Rostrum broad, length about 2.5 times depth, short, scarcely overreaching basal segment of antennular peduncle, with 3–4 dorsal (1–2 postorbital) and 4–5 ventral teeth. Eyes pigmented, cornea broader than stalk. Anterior 4 abdominal pleura rounded, fifth with posterolateral spine, sixth armed posterolaterally in female. Epipods (6): present on first and third maxillipeds and anterior 4 pereopods. Pleurobranchs (5): present on all pereopods. Arthrobranchs (7): on second (1) and third (2) maxillipeds and anterior 4 pereopods. Podobranchs absent. Mandible lacking incisor process, with 3-jointed palp. Pereopods 1–2 chelate; merus, carpus, and propodus of second leg multiarticulate. Pereopods 3–5 with propodus multiarticulate. Endopod of first pleopod of male lacking appendix interna, with distal coupling hooks. Endopod of second pleopod of male with appendix masculina subequal in length to appendix interna.

Remarks.—The gill arrangement, summarized below and shown in Figs. 1–5, is different in each genus. All five genera have five pleurobranchs, one on each
Fig. 5. *Somersiella sterreri* Hart and Manning: *a*, Animal in lateral view; *b*, Rostrum; *c*, Gill complement; *d*, Base of third maxilliped with larger arthrobranch removed to show smaller, more dorsal one. (From Hart and Manning 1981: figs. 1, 2, 4, 5).

pereopod. *Barbouria* and *Janicea* have only two arthrobranchs, both on the third maxilliped, whereas *Ligur* and *Parhippolyte* have six arthrobranchs, two on the third maxilliped, one on each of the anterior four pereopods. In contrast, in *Somersiella* there are seven arthrobranchs, one on the second maxilliped, two on the third, and one on each of the anterior four pereopods. *Somersiella* lacks podobranchs, but the other genera each have one on the second maxilliped. All five genera have epipods on the anterior four pereopods, and also on one or more of the maxillipeds; in *Ligur* and *Parhippolyte* there is an epipod on each maxilliped, in *Somersiella* on the first and third, in *Janicea* on the second and third, and in *Barbouria* on the third.

Overall, the gill complements are as follows (*r* = reduced):

<table>
<thead>
<tr>
<th></th>
<th>Barbouria</th>
<th>Janicea</th>
<th>Ligur</th>
<th>Parhippolyte</th>
<th>Somersiella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epipods</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Pleurobranchs</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Arthrobranchs</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Mxp 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mxp 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mxp 3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P 1</td>
<td></td>
<td></td>
<td>r</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P 2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P 3</td>
<td></td>
<td></td>
<td>r</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P 4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podobranchs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mxp 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

We consider other features, especially the subdivision of the carpus and propodus of the walking legs, to be particularly important at the generic level, possibly even more important than the differences in the gill formulas. *Barbouria* and *Ligur* have the carpus and/or the propodus of the walking legs undivided, whereas in the other three genera either the propodus or the carpus and propodus are multiarticulate. In *Barbouria*, *Janicea*, and *Ligur* the rostrum is slender, about five times longer than high, whereas in *Parhippolyte* and *Somersiella* it is much deeper, about two and one-half times longer than high. The cornea is narrower than the stalk in *Barbouria*, broader in the other four genera. The appendix masculina is shorter than the endopod in *Barbouria* and *Parhippolyte*, subequal to it in *Somersiella*, and longer than the endopod in *Janicea*. The length of the appendix masculina has not been recorded for *Ligur*.

These genera exhibit what we interpret as a Tethyan distribution pattern (Fig. 6). Often in such patterns, the largest number of species occurs in the Indo-West Pacific area. Curiously, four of the five species considered here occur in the western Atlantic, and three are found in Bermudan caves, whereas only one species occurs in the Pacific.

As pointed out by Iliffe, Hart, and Manning (1983), some of the invertebrates frequenting marine caves in Bermuda appear to have affinities with deep-sea organisms. In the group of shrimps reported here, most of which inhabit caves
and anchialine pools, actually interstitial habitats in rock, one of the species, *L. ensiferus*, lives in deep water, on the outer shelf or upper slope.

Acknowledgments

Our studies of the Bermudan cave shrimps, carried out in cooperation with T. Iliffe, Bermuda Biological Station, have been supported by grants from the National Geographic Society (2485-82) and the Scholarly Studies Program of the Smithsonian Institution. We thank Horton H. Hobbs, Jr., Brian Kensley, and Austin B. Williams for comments on the manuscript. The figures were compiled by Lilly King Manning, who also prepared some of the original illustrations. Figure 5 is reprinted, with permission, from the *Journal of Crustacean Biology*. This paper is contribution 986 from the Bermuda Biological Station for Research.

Literature Cited

Borradaile, L. A. 1899. On the Stomatopoda and Macrura brought by Dr. Willey from the South Seas.—In A. Willey, Zoological Results based on material from New Britain, New Guinea, Loyalty Islands and elsewhere, collected during the years 1895, 1896 and 1897 4:395-428.

Sarato, C. 1885. Étude sur les crustacés de Nice.—Moniteur des étrangers 222:2.

Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560.