PARTIAL REVISION OF PINNOTHERID CRAB GENERA WITH A TWO-SEGMENTED PALP ON THE THIRD MAXILLIPED (DECAPODA: BRACHYURA)

Ernesto Campos

ABSTRACT

Two new genera in the Pinnotheridae are recognized from the northwestern Atlantic, Gemmotheres, new genus (type species Pinnotheres chamae Roberts, 1975) and Tunicotheres, new genus (type species Pinnotheres moseri Rathbun, 1918). These genera shared a 2-segmented palp on the third maxilliped with Calyptraeotheres Campos, 1990, Dissodactylus Smith, 1870, Ostracotheres H. Milne Edwards, 1853, and Xanthasia White, 1846. They differ in shape, texture, and hardness of the carapace, shape and relative length of third maxilliped articles, relative length of the walking legs, and relative length and shape of their articles. Comparisons among these genera are provided in a dichotomous key based on adult female characters.

During the last five years I have studied the systematics of a subgroup of pinnotherid crabs which are characterized by a two-segmented palp on the third maxilliped (lacking a dactylus). The first result of this study was the erection of the genus Calyptraeotheres Campos, 1990 (type species Fabia granti Glassell, 1933) from the Mexican Pacific. This work led to the systematic reassessment of the remaining American Pinnotheridae with a two-segmented palp on the third maxilliped, Pinnotheres moseri Rathbun, 1918, and P. chamae Roberts, 1975. The analysis of several morphological and ecological features has led to the conclusion that: (1) P. moseri and P. chamae do not belong in the genus Pinnotheres Bosc, 1802 [type species P. pisum (Linnaeus, 1767)] or any other named genera in the Pinnotheridae, and (2) several autapomorphies separate these taxa at the generic level.

MATERIALS AND METHODS

All nominal genera in the Pinnotherinae sensu lato (see Rathbun, 1918; Tesch, 1918; Schmitt et al., 1973) were analyzed, most by study of actual specimens. In some cases, e.g., Durkheimia besutensis Serène, 1967, Ostracotheres affinis H. Milne Edwards, 1853, and those genera named in Manning (1993b), it was necessary to rely on descriptions and figures in current literature.

Specimens of Pinnotheres chamae, P. moseri, and Dissodactylus mellitae Rathbun, 1900, were studied from material deposited in the National Museum of Natural History, Smithsonian Institution, Washington, D.C.; Ostracotheres tridacnae (Rüppell, 1830) (type species of Ostracotheres H. Milne Edwards, 1853), Ostracotheres cynthiae Nobili, 1905b, and O. spondyli Nobili, 1905a, from the Nationaal Natuurhistorisch Museum, Leiden, and Muséum National d’Histoire Naturelle, Paris; and Calyptraeotheres granti (Glassell, 1933), O. subglobosus (Baker, 1907), O. holothuriensis (Baker, 1907), Epulotheres sp., and other genera with a three-segmented palp (see Campos, 1993; Manning, 1993a), including P. pisum (Linnaeus, 1767) (type species of Pinnotheres Bosc, 1802), from the Invertebrates Collection, Facultad de Ciencias, Universidad Autónoma de Baja California, México. Original figures were made with a camera lucida. Measurements are in mm. The third maxilliped is abbreviated to MXP3 and the walking legs are indicated as WL1–WL4. The diagnoses and key are based on adult females only.

SYSTEMATICS

Gemmotheres, new genus

Figs. 1A–C, 2A–F

Diagnosis.—Carapace suborbicular, soft, smooth, membranous, widest medially, regions undefined, lacking both sharp anterolateral border and longitudinal depressions (sulci), front deflexed, narrow. Eyes not visible in dorsal view. MXP3 with ischium and merus indistinguishably fused, inner distal angle of merus absent; palp 2-segmented, carpus shorter but wider than styliform propodus. Exopod with incompletely bisegmented flagellum. WL symmetrical except second pair with left dactyl longer than right one; relative lengths of right WL 1 > 3 > 4 > 2, of left WL 1 > 2 > 3 > 4; relative lengths of right dactyli 4 > 3 > 2 = 1, of left dactyli 4 = 2 > 3 > 1. Abdomen wider than long, 6 somites and telson free.

Male.—Unknown.

Type Species.—By present designation and monotypy Pinnotheres chamae Roberts, 1975.

Etymology.—From the Latin gemma, jewel, and the ending theres.
Fig. 1. *Gemmotheres chamae* (Roberts, 1975). Female. A, dorsal view; B, frontal view; C, chela. Carapace width = 5.0 mm.
Fig. 2. *Gemmotheres chamae* (Roberts, 1975). Female. A, B, MXP3, outer and inner face, respectively; C–F, right WL 1–4; D', carpus, propodus, and dactylus of left WL2.
Gender.—Feminine.

Host.—In the jewel box *Chama congregata* (Bivalvia) attached to coral nodules (Roberts, 1975).

Distribution.—Known only from the type locality, off the North Carolina coast, U.S.A.

Remarks.—See below.

Tunicotheres, new genus

Fig. 3A, B, 4A-F

Diagnosis.—Carapace subpentagonal, firm but not hard, uneven, dorsal regions elevated and well defined, front produced, arcuate, medially emarginated, anterolateral border rounded. Eyes visible in dorsal view. MXP3 with ischium and merus indistinguishably fused, inner angle of merus absent; carpus subquadrate with rounded distal angles, shorter than oblong propodus. Exopod with one-segmented flagellum. WL slender, symmetrical, relative length 2–4 > 1, WL4 articulated to body dorsad to WL3, dactyli with straight base and curved spiniform tip, those of last pair longer, swimming setae on WL2 and WL3. Abdomen longer than width, with medial longitudinal elevation, of 6 somites and telson free.

Male.—Unknown.

Type Species.—By present designation and monotypy, *Pinnotheres moseri* Rathbun, 1918.

Etymology.—From Latin, *tunica*, tunic, and the ending, *theres*.

Gender.—Feminine.

Hosts.—Commensal in ascidians, *Ascidia nigra* Savigny, *Molgula occidentalis* Traustedt, and *Polycarpa obtecta* Traustedt (see Goodbody, 1960; Roberts, 1975). Also from sea squirts, dredged in 17 feet (5.5 m) from “... rocky bottom covered with grass and thin layers of sand and mud...” (Rathbun, 1918).

Distribution.—Western Florida; Jamaica.

Remarks.—Campos (1990) pointed out that five genera in the Pinnotheridae contain one or more species with the palp of MXP3 composed by two segments (see below). *Durckheimia* should not have been included, since its type species, *D. carinipes* de Man, 1889, has a carapace with a longitudinal ridge, upturned margins, and three segments on the palp of MXP3 (see Bürger, 1895; Serène, 1967), but *D. besutensis* Serène, 1967, possesses a two-segmented palp. The species *besutensis* was erroneously assigned within *Durckheimia*. In addition to the two-segmented palp on MXP3, *besutensis* differs from *Durckheimia* spp., as follows: carapace dorsally and ventrally irregularly pitted, lacking longitudinal ridge and upturned margins; MXP3 with ischium and merus indistinguishably fused, lacking inner angle, and exopod tapering distally with inner and outer margins concave and flagellum one-segmented (see Serène, 1967, figs. 4, 5). The generic status of *besutensis* remains uncertain, but it definitely does not belong in *Durckheimia*.

As noted in the taxonomic key given below, the genera *Gemmotheres* and *Tunicotheres* resemble *Ostracotheres*. Fundamental morphological differences between these genera including shape, texture and hardness of the carapace, shape and relative length of MXP3 articles, and relative length of WL and relative length and shape of their articles, particularly the propodus and dactylus. Manning (1993c) discussed several bioecological features of *T. moseri* (Rathbun) and *G. chamae* (Roberts). Both are symbionts of different kinds of host, Mollusca-Bivalvia and Urochordata-Ascidacea, respectively. This is interpreted as divergent traits and provide support for the proposed new genera.

KEY TO PINNOTHERID CRAB GENERA WITH 2-SEGMENTED PALP ON MXP3, BASED ON ADULT FEMALES

1. Dactyli of WL bifurcated in both male and female

Fig. 3. *Tunicotheres moseri* (Rathbun, 1918). Female. A, dorsal view; B, ventral view. Carapace width = 7 mm.
Fig. 4. *Tunicotheres moseri* (Rathbun, 1918). Female. A, B, MXP3, outer and inner face, respectively; C, exopod of MXP3; D, E, right cheliped, outer and inner face, respectively; F, frontal view.
— Dactyli of WL simple 2
2. Carapace rounded, with upturned lateral margins and medial mushroom-shape tubercle Xanthasia White, 1846 (Indo-west Pacific region; type species, X. marigera White, 1846; hosts, Mollusca–Bivalvia: Mytilus, Tridacna).
 — Carapace without upturned lateral margins ... 3
3. Carapace with sharp lateral margins, dorsally with 2 longitudinal depressions (sulci); carpus of MXP3 larger than propodus ... Calyptraeotheres Campos, 1990 (Mexican Pacific region; type species Fabia granti Glassell, 1933; hosts, Mollusca–Gastropoda: Crucibulum, Crepidula, Acmaea).
 — Carapace without sharp lateral margins and sulci .. 4
4. Carapace suborbicular in shape, soft, membranous, regions undefined, eyes not visible in dorsal view, front not margined; MXP3 with inner distal angle of merus absent, propodus stylo-iform Gemmothorae, new genus (Northwest Atlantic region; type species, Pinnotheres chamae Roberts, 1975; host, Mollusca–Bivalvia: Chama).
 — Carapace firm but not hard, regions defined ... 5
5. Carapace subpentagonal in shape, antennae overreaching upper margin of orbits; MXP3 with inner distal angle of merus absent, carpus sub-quadrate in shape; WL4 articulated to body dorsad to WL3 Tunicotheres, new genus (Caribbean Sea region; type species, Pinnotheres moseri Rathbun, 1918; hosts, Chordata–Ascidiacea: Ascidia, Molgula, Polycarpa).
 — Carapace broadly rounded; antennae minute; MXP3 with inner distal angle of merus curved, carpus rounded; WL4 articulated to body not dorsad to WL3 Ostracotheres H. Milne Edwards, 1853 (Northwestern Indian Ocean Region; type species Pinnotheres tridacnae Rüppell, 1830; host, Mollusca–Bivalvia: Pinna, Tridacna; questionably in ascidians).

ACKNOWLEDGEMENTS

This work was partially supported by program 0134 “Crustáceos Simbiontes de Baja California” of the Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) and by agreement UABC–CONACYT 3587–N9311. I am deeply grateful to Danièle Guinot, Raymond B. Manning, L. B. Holthuis, and C. H. J. M. Fransen for supporting my pinnotherid crab studies. Very constructive criticism was received from Dr. G. Pohle. My wife Alma Rosa prepared figures for publication. The author is a fellow of the “Programa de Estímulo al Personal Académico 94/95” of the UABC.

LITERATURE CITED

Glassell, S. A. 1933. Description of five new species of brachyurans collected on the west coast of Mexico.—Transactions of the San Diego Society of Natural History 7: 331–334.
Seréne, R. 1967. Sur deux espèces nouvelles de brachyurres (Crustacés Décapodes) et sur une troisième peu connue, récoltées dans la région mal-

RECEIVED: 22 May 1995.

Address: Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 2300, Ensenada, Baja California 22800, México. (e-mail: ecampos@bahia.ens.uabc.mx)