

Keys to commercial crustaceans of tropical waters and other distant regions are lacking in Soviet literature. Hence the publication of keys to the most important groups of crustaceans to be found outside the USSR should be helpful to the fishing industry.
R.N. Burukovskii has presented interesting data on decapods shrimps, spiny lobsters, and rock lobsters. The major commercial stocks of these crustaceans are found on the continental shelves and slopes in tropical and subtropical seas. The morphology of these decapods has been described in detail and a large number of keys to species, genera, and families compiled.

## Key to <br> Shrimps and Lobsters

# Key to <br> Shrimps and Lobsters 

R.N. BURUKOVSKII

RUSSIAN TRANSLATIONS SERIES 5


1983
A.A. BALKEMA / ROTTERDAM

## RUSSIAN TRANSLATIONS SERIES

1. K.Ya. Kondrat'ev, Yu.I. Rabinovich \& W. Nordberg (editors): USSR/USA Beriug Sea Experiment
2. D.V. Nalivkin: Hurricanes, Storms and Tomadoes
3. V.M. Novikov (editor): Handbook of Fishery Technology, Volume 1
4. F.G. Martyshev: Pond Fisheries
5. R.N. Burukovskii: Key to Shrimps and Lobsters

Translation of:
Opredelitel' Krevetok, Langustovi Omarov.
Pishchevaya Promyshlennosl' Publishers, Moscow, 1974
(c) 1983 Copynight reserved

Translator: Dr. B.R. Shama
General Editor: Dr. V.S. Kothekar

ISBN 9061912962

Printed in India at Raj Bandhu Industrial Co., New Delhi

Keys to commercial crustaceans of tropical waters and other distant regions are lacking in Soviet literature. Hence the publication of keys to the most important groups of crustaceans to be found outside the USSR should be helpful to the fishing industry.
R.N. Burukovskii has presented interesting data on decapods-shrimps, spiny lobsters, and rock lobsters. The major commercial stocks of these crustaceans are found on the continental shelves and slopes in tropical and subtropical seas. The morphology of these decapods has been described in detail and a large number of keys to species, genera, and families compiled.

## PREFACE

Decapods constitute the most important group in nonfish catches by commercial fishermen and hence their detailed study is essential to the fishing industry. The available literature provides identification keys mainly for regional decapod fauna: Key to Shrimps, Crayfishes, and Crabs of the Far East (Vinogradov, 1950); Key to the Fauna and Flora of the Northern Seas (Gaevskaya, 1948); and Key to the Decapod Fauna of the Black and Azov Seas (Kobyakova and Dolgopol'skaya, 1969).

The keys included in the present book cover the tropical and subtropical decapods which are currently exploited and potentially important for the fishing industry. Keys translated earlier by the author for several groups of decapods have been incorporated: the classification of the subfamilies of all decapods published by Balss (1957); the key to shrimps compiled by Anderson and Lindner (1945), considered one of the most important publications of the twentieth century (G. Gunter, 1957) even though it covers primarily American fauna, has now become obsolete in certain aspects; and the key to extant genera of caridean and stenopodidean shrimp published by Holthuis (1952).

These publications have been somewhat revised or supplemented in keeping with more recently published data. A number of keys to the regional fauna of different groups of decapods have been incorporated. For one series of the crustacean group (rock lobsters, spiny lobsters, etc.), however, keys had to be formulated on the basis of original descriptions (identifications) of genera and species, since no keys were available for them.

Unfortunately, the present keys cannot be considered comprehensive. A fcw facts and figures reveal the reasons for this deficiency. The order Decapoda presently comprises 1,001 genera with 8,321 species (Balss, 1957) but these figures have increased significantly with every passing year. Shrimps now include about 230 genera with about 2,000 species. Of these, 33 genera in the tribe Penaeidea alone (excluding fossils) comprise more than 320 species. This in itself indicates that the task-of compiling a comprehensive key assumes rather herculean proportions! Hence the format of the classification given.here is perforce unique. Keys up to the level of subfamilies and exhaustive keys up to the level of genera have been given for all the known shrimps, spiny lobsters, and rock lobsters. Keys up to the level of species are provided for almost all the genera of shrimp of families Stenopodidea and Penaeidea, as well as families of
spiny lobsters and rock lobsters. Despite its lack in species identifications for every genus of decapods, the present classification remains the most comprehensive of all the known keys for this group of crustaceans in existence to date.

## CONTENTS

PREFACE ..... vii
I. PRINCIPAL MORPHOLOGICAL FEATURES OF DECAPOD CRUSTACEANS (CRUSTACEA, DECAPODA) ..... 1
II. TAXONOMY OF ORDER DECAPODA LATREILLE ..... 17
Suborder Natantia Boas, 1880 ..... 17
Tribe Penaeidea de Haan, 1849 ..... 17
Family Penaeidae Dana, 1852 ..... 18
Family Sergestidae Dana, 1852 ..... 18
Subfamily Penaeinae Dana, 1852 ..... 18
Genus Penaeus Fabricius, 1798 ..... 20
Genus Funchalia Johnson, 1867 ..... 30
Genus Xiphopenaeus Smith, 1869 ..... 31
Genus Parapenaeus Smith, 1885 ..... 31
Genus Parapenaeopsis (Alcock), 1901 ..... 33
Genus Atypopenaeus Alcock, 1906 ..... 36
Genus Trachypenaeopsis Burkenroad, 1934 ..... 37
Genus Trachypenaeus Alcock, 1901 ..... 37
Genus Penaeopsis (Bate, 1881) ..... 41
Genus Metapenaeopsis Bouvier, 1905 ..... 41
Genus Metapenaeus Wood-Mason and Alcock, 1891 ..... 53
Subfamily Solenocerinae Wood-Mason, 1891 ..... 58
Genus Solenocera Lucas, 1849 ..... 58
Genus Haliporus Bate, 1881 ..... 60
Genus Hymenopenaeus Smith, 1882 ..... 60
Subfamily Benthesicyminae Bouvier, 1908 ..... 62
Genus Bentheogennema Burkenroad, 1936 ..... 63
Subfamily Aristacinae Alcock, 1901 ..... 63
Genus Hepomadus Bate, 1881 ..... 63
Genus Hemipenaeus Bate, 1881 ..... 64
Genus Plesiopenaeus Bate, 1881 ..... 64
Genus Aristeus Duvernoy, 1840 ..... 65
Subfamily Sicyoninae Ortmann, 1890 ..... 66
One genus: Sicyonia H. Milne-Edwards, 1830 ..... 66
Tribe Caridea Dana, 1852 (-Eucyphidea) ..... 70
Family Oplophoridae Kingsley, 1878 ..... 73
Family Atyidae Dana, 1852 ..... 75
Family Pasiphaeidae Dana, 1852 ..... 81
Family Rhynchocinetidae Ortmann, 1890 ..... 82
Family Bresiliidae Calman, 1896 ..... 82
Family Campylonotidae Sollaud, 1913 ..... 83
Family Palaemonidae Samouelle, 1819 ..... 84
Subfamily Palaemoninae Dana, 1852 ..... 85
Subfamily Pontoniinae Kingsley, 1878 ..... 89
Family Gnathophyllidae Ortmann, 1890 ..... 100
Family Alpheidae Bate, 1888 ..... 101
Family Hippolytidae Bate, 1888 ..... 107
Family Pandalidae Bate, 1888 ..... 115
Family Processidae Ortmann, 1898 ..... 121
Family Crangonidae Bate, 1888 ..... 121
Tribe Stenopodidea Bate, 1888 ..... 126
Family Stenopodidae Huxley, 1878 ..... 126
Genus Stenopus Latreille, 1819 ..... 130
Genus Odontozona Holthuis, 1946 ..... 131
Genus Richardina A. Milne-Edwards, 1881 ..... 131
Genus Engystenopus Alcock and Anderson, 1894 ..... 131
Genus Microprosthema Stimpson, 1860 ..... 132
Genus Spongicola de Haan, 1849 ..... 132
Genus Spongicoloides Hansen, 1908 ..... 132
Suborder Reptantia Boas, 1880 ..... 133
Section Palinura Borradaile, 1907 ..... 133
Tribe Eryonidea de Haan, 1844 ..... 134
Family Polychelidae Wood-Mason, 1877 ..... 134
Tribe Scyllaridea Borradaile, 1870 ..... 135
Family Palinuridae Gray, 1847 ..... 135
Genus Jasus Parker, 1884 ..... 137
Genus Palinurellus van Martens, 1878 ..... 137
Genus Palinurus Fabricius, 1798 ..... 138
Genus Palinustus A. Milne-Edwards, 1881 ..... 138
Genus Justitia Holthuis, 1946 ..... 138
Genus Puerulus Ortmann, 1897 ..... 138
Genus Panulirus White, 1847 ..... 139
Family Scyllaridae White, 1847 ..... 143
Genus Ibacus Leach, 1815 ..... 143
Genus Arctides Holthuis, 1960 ..... 144
Genus Parribacus Dana, 1852 ..... 144
Genus Scyllarides Gill, 1898 ..... 145
Genus Scyllarus Fabricius, 1775 ..... 146
Section Astacura Borradaile. 1907 ..... 151
Family Homaridae* ..... 151
Genus Homanas Weber, 1793 ..... 152
Genus Eunephrops Smith, 1885 ..... 152
Genus Enoplometopus A. Milnc-Edwards, 1862 ..... 153
Genus Nephropsis Wood-Mason, 1872 ..... 153
Genus Nephropides Manning, 1969 ..... 154
Genus Nephrops Leach, 1315 ..... 155
Genus Thaumastocheles Wood-Mason, 1874 ..... 157
BIBLIOGRAPHY ..... 159
INDEX ..... 165

## I

## PRINCIPAL MORPHOLOGICAL FEATURES OF DECAPOD CRUSTACEANS (CRUSTACEA, DECAPODA)

Decapods are higher forms of crustaceans in which one of the most important characters is constancy in number of body segments. The body consists of three sections: head, thorax, and abdomen. In most species the segments of the head and thorax are fused. Only in some fresh-water crayfish and most hermit crabs is the last thoracic somite movable. In some shrimps (for example, Penaeus) the anterior part of the head (with the eyes and antennules) is separated from the remaining portion by a joint. The entire body of a decapod consists of 21 segments, the head, thorax, and abdomen comprising 6, 8 , and 7 segments respectively.

Through the fusion of the head and thoracic sections the cephalothorax is formed, which is covered laterally and dorsally with a common covering, the carapace.

Carapace. Exoskeletal cover which extends dorsally over the fused segments of the cephalothorax. True, in some cases (Typion, Porcellana, Paguridae, Homola, Dromia, etc.) the carapace and the penultimate segment* of the thorax are separated. The lateral parts of the carapace cover the branchial regions and are called the branchiostegites. The structure of the carapace is highly variable and distinctive in different groups of decapods and hence an important taxonomic character. In shrimps it is usually elongated, laterally compressed, and posteriorly rounded, merging into the lateral surfaces with no pronounced curve. The same is true of spiny lobsters, lobsters, crayfishes and some snubtailed crustaceans. In other groups of Reptantia the carapace is more often dorsoventrally flat, short, and more or less elongated in the direction of the transverse axis of the body. Its contours are extremely
5 variable. The dorsal surface is separated from the lateral surfaces by a distinct margin which is sometimes denticulate. The lateral and dorsal

[^0]surfaces are divided into a number of regions by grooves. The cervical groove (the place of attachment of the gastric muscles) (Figure 1) is a frequent feature and separates the gastric area of the carapace from the cardiac. The latter is separated from the branchial areas by the branchial grooves. In addition to these more prominent grooves, other grooves, carinae, teeth, and spines occur on the carapace, the presence or absence of which is of taxonomic significance. The branchiostegites are never fused with the thoracic coverings, which are divided into segments (somites); they are fused on the anterior side with the supraoral plate only in true crabs. The true crab differs from other crab-like crustaceans in this character, whereby the anterior margin of the branchial cover hangs freely from the base of the antennae, forming a broad slit for the water passing out of the branchial cavity. In true crabs a more or less broad fusion occurs between the supraoral plate, the branchial cover, the base of the antennae, and the branchial opening.


4 Figure 1. Diagrammatic sketch of carapace of macruran crustaceans (shrimp, spiny lobster, lobster) (from Kubo, 1949).
$A$-lateral view; $B$-dorsal view; Sections of carapace: 1 -frontal (forehead); 2—orbital; 3-antennal; 4-gastric; 5-pterygostomian; 6-cardiac; 7-branchial gill cover or branchiostegite; 8-marginal; Grooves: 9-gastrofrontal; 10-postocular; 11-orbitoantennal; 12-antennal; 13-cervical; 14-whepatic; 15-inferior; 16-branchiocardiac; 17-median; 18-adrostral: Carinac: 19-gastrofrontal; 20-gastroorbital; 21-antennal; 22—postrostral; 23-adrostral: 24—cervical; 25-hepatic; 26-branchiocardiac; 27-pterrgostomian; Spines: 20-postrostral; 29-epigastric; 30—supraorbital: 31-antennal; 32—branchiostcgal. 33-pterygostomian; 34-postorbital; 35-postantennal; 36-hreatic; 37.*

[^1]The anterior margin of the carapace between the orbits is called the forehead. In swimming forms it very frequently juts out forming a rostrum (Figure 2). Depending on the decapod's mode of life, the structure of the rostrum varies considerably, ranging from a short and simple spine or tip above the eyes to a knife- or saber-shaped structure.


Figure 2. Diagrammatic sketch of macruran crustaceans (shrimp, spiny lobster, lobster) (lateral view) (from Holthuis, 1955).

1—eye ( $a$ —orbit; $b$-stalk; c-cornea); 2—rostrum; 3-antennule; 4—scaphocerite; 5— antennal flagellum; 6-maxilliped III; 7-walking lcgs (percopods): 8-swimming limbs (pleopods); 9—caudal limbs (uropods); 10—telson; 11—false chcla; 12—true chela; 13— carpus divided into secondary segments; 14-carapace; 15-abdomen; 16-appendix interna; 17--appendix masculina; 18-dieresis; 19-pleuron of abdominal somite (epimeron).

In some cases it articulates with the carapace (shrimps of genera Pantomus and Rhynchocinetus). On the upper and lower sides, sometimes only on the upper side, the rostrum is armed with movable and fixed teeth. The armature of the rostrum is important in taxonomy and for the sake of the number of teeth on the rostrum is expressed by the following formula (Vinogradov, 1950):

$$
a-b+\frac{c-d}{e-f} g-h
$$

where $a=$ minimum number of teeth on middle crest of carapace (epigastric teeth);
$b=$ maximum number of epigastric teeth;
$c=$ minimum number of teeth on upper margin of rostrum (rostral teeth);
$d=$ maximum number of upper rostral teeth;
$e=$ minimum number of lower rostral teeth;
$f=$ maximum number of lower rostral teeth;
$g=$ minimum number of teeth at end of rostrum (terminal teeth of rostrum);
$h=$ maximum number of terminal teeth .
A large number of appendages are attached to the lower side of the cephalothorax. The scutella of the carapace, known as the sterna, are located between them. In most shrimp these are poorly developed because of the fact that the bases of the appendages are very close to each other. In spiny lobster and lobster the shape of the sterna often constitutes an important taxonomic character (Scyllaridae, Enoplometopus, Homaridae).

Abdomen. Located behind the cephalothorax. Usually consists of seven abdominal somites (the last one called the telson). The abdomen is well developed in shrimp and highly compressed laterally. The somites of the abdomen articulate freely with each other. Laterally, the margins of the somites hang down freely, forming the pleura (epimera). The abdominal sternal surface is not as well developed as the lateral margins.


Figure 3. Diagrammatic sketch of a typical appendage of a decapod crustacean (from Holthuis, 1955).
1--endopod; 2-exopod; 3-dactyl (finger);
4-propodus; 5-carpus; 6-merus; 7-ischium;
8-basis; 9—coxa; 10—precoxa; 11--body; 12-endites; 13-epipod; 14—podobranchia; 15-arthrobranchia; 16-pleurobranchia.

There is a characteristic curve in Caridea between the third and fourth somites, and the epimeron of the second somite is better developed than the epimera of the other somites, overlapping the contiguous epimera anteriorly and posteriorly. This overlapping is especially pronounced in the female, sometimes forming a unique oval chamber as, for example, in Sympasiphaea annectens. In swimming forms the sixth somite is markedly elongated, being more than twice the length of the fifth. In other groups of decapods the epimera are reduced. In the hermit crab, for example, the abdomen is mostly devoid of appendages and is soft and often spiraled. A more complete reduction of the abdomen is found in members of Galatheidae in which it is tucked under the cephalothorax. This reduction is maximum in crabs. The pleura are totally absent here and the abdomen flat and tucked under the carapace; in the male it is located in a special groove. In the female the abdomen is two to three times broader and protects the abdominal processes involved in egg-laying. In the male some of the modified abdominal processes participate in copulation. The shape of these processes is highly variable. Some of the segments of the abdomen may be fused.

Limbs and other appendages. In decapods only one of the 21 segments of the body-the telson-lacks appendages. Hence a total of 20 pairs of jointed appendages are present, one pair on each segment. Each appendage is initially biramous (Figure 3). The inner ramus of the appendage or endopod carries the major functional load. The outer ramus or exopod is often subject to reduction. The endopod of a typical appendage consists of seven segments labeled (beginning from the distal
7 end): dactyl (finger), propodus (the dactyl and propodus together may form a true or false chela), carpus, merus, ischium, basis (the exopod is attached to the basis), and coxa. The coxa is attached to a small outgrowth on the body, the precoxa. The coxa often has a folded lobethe epipod (of mastigobranchia) to which the gill-the podobranchiais attached. One or two gills also occur on the joint between the coxa and the body and are called arthrobranchiae. Finally, one or two pairs of gills are located on the lateral surface of the body and known as pleurobranchiae. Several modifications of a typical appendage are known, which relate to the different functions of the appendages of the different segments of the body. In some species some appendages are entirely or partly reduced. This is especially true of the exopods, particularly those of the walking legs.

Eyes. The stalked eycs of decapod crustaceans are located on the first segment of the body and included in the total number of body appendages. They usually consist of two segments: a basal segment and a terminal one carrying the cornea. The size ratio between these two segments may vary considerably. In most cases the terminal segment is
larger, although the contrary is also known (Podophtalmus, Brachyura, Portunidae). The cornea is faceted and usually terminally located. It may be black, deep brown, or reddish brown in color. In deep-sea decapods it is reduced to a varying degree and in cavernous decapods almost totally absent.

Antennules. Located on the second segment of the body. In shrimp they are placed right below the eyes. Because of the fact that in crab the eyes are shifted toward the sides, the antennules appear to be located between them, almost along the median line of the body. Each antennule consists of a three-segmented peduncle and two or three (Palaemonidae and some members of Hippolytidae) flagella, which are attached to the last segment of the peduncle. In shrimp the antennular peduncles are freely attached to the body and highly variable in size. In crab with highly reduced antennules the basal segments are contiguous with the margins of the forehead or mouth and thus lose their mobility. The antennular flagella vary considerably in size but are usually shorter than the antennae (see below); in some deep-sea shrimp they may be several times longer than the body.

The proximal part of the basal segment is often flat in shrimp, forming a socket for the eye. The expansion on the outer side of the basal segment is called the stylocerite. The structure at the base of the basal segment of the antennular peduncle is called a statocyst (balancing organ). In some shrimps of family Penaeidae yet another structure occurs on the inner side of this segment. Lanceolate in shape it is known as the prosarthema and its presence or absence is an important taxonomic character.

Exceptionally, in shrimp of the genus Solenocera (Penaeidae) and in lower crabs of the genus Albunea (Hippidea) the antennular flagella may fuse to form a siphon-tube, which is used for respiration. In male shrimp of family Sergestidae the flagella are modified into an organ for holding the female.

Antennae. Located next to the antennules, the antennae consist of a five-segmented peduncle comprising a two-segmented (second segment called the basicerite) and a three-segmented endopod. The last segment of the endopod (carpocerite) carries a long flagellum. The excretory organ (antennal gland) opens at the back of the first segment of the protopodite. In addition to the endopod, the second segment also has an exopod known as the scaphocerite. This scale-like structure is highly developed in shrimp; together with the rostrum, the scaphocerites constitute a stabilizer-analogous to the tail stabilizer of an airplane. This device is used for maintaining the direction of movement in such situa-
8 tions as backing away from predators. In the case of spiny lobsters, lobsters, hermit crabs, and crabs the scaphocerite has undergone reduction and gradually disappeared in the same way as the rostrum. This change took place in higher crustaceans as a result of a transition from
swimming to crawling as a means of locomotion. The antennal flagella in shrimp are usually very long, sometimes even several times longer than the body. In crab they are reduced, short, or may be totally absent.

The modifications of the antennae in the spiny lobsters of family Scyllaridae are rather interesting. The basal segment of the antenria is fused with the margin of the forehead; of the remaining three movable segments the first and third are very small and the second very broad, dorsoventrally flat, and more or less highly serrate along the outer margin. This segment, together with the terminal one, which is also modified in the same way, forms a unique scapula (squama).

Mandibles. The first pair of oral appendages, the mandibles, are considerably modified and specialized appendages. In the identification of decapods their analysis is mandatory even though they lie much deeper in the body than do the other oral appendages. To remove the mandibles properly, the other oral appendages should either be pushed aside or carefully removed first. The body of the mandible consists of a divided apparatus and the base to which the muscles are attached. The divided apparatus consists of two highly calcified processes-the molar and incisor-located approximately at right angles to each other. In most decapods (Penaeidea, Stenopodidea, and all Reptantia), as well as in primitive types of Eucyphidea (Pasiphaeidae, Stylodactylidae, Oplophoridae), the molar and incisor are separated from each other only by a groove. In other members of Eucyphidea these processes are in sharp apposition to each other. In some families the incisorial process has disappeared completely and only the molar remains.

Moreover, the mandibles usually have a palpus (synaphipod), which primarily consists of three segments. However, the first or second segment of the palpus is frequently reduced and sometimes the entire palpus absent. These features constitute important taxonomic characters. In origin, the mandibles are possibly homologous to the coxae of other appendages or to their several segments. The origin of the palpus is controversial; some researchers hold that it is not homologous to the exopod but rather a new structure.

The mandibles are situated between the upper and lower labia. The palpus, in most cases, is attached to the upper labium. In those forms which have both processes, the incisorial is attached to the upper labium and the molar directed toward the oral opening. The mandibles are the major grinding organs of the oral apparatus and act as the opening and closing forceps. The other oral appendages are located behind the lower labium and cover the mandibles like a fold. The two pairs of maxillae belong to this group.

Maxilla I (or maxillula). This is a bilobate structure in which the lower lobe is slightly weaker than the upper. The upper or stronger lobe is covered with a series of large spines or teeth which, like the mandibular
teeth, help to grind food. The two lobes' may articulate with each other. The palpus of maxilla I is most often single-, rarely double- (Homarus, Thalassinidea, some crabs), and very rarely three- or four-segmented (Penaeus). The lobes of maxilla I are also known as endites or laciniae.

Maxilla II. Much larger than maxilla I, also bilobate; but here each lobe may be further divided into two. The palpus is usually singlesegmented (in Nephrops, double-segmented) and the exopod prominent (also known as the scaphognathite or respiratory lamella). The vibrating movements of the lamella cause water to pass through the gills. Its removal causes death by asphyxiation.

The first three pairs of the thoracic limbs are known as maxillipeds.
Maxilliped I. In structure, resembles a maxilla. The coxa and basis are quite broad and look like lobes (the coxal lobe may be bifid) (for example, in Penaeidae). The palpus of the maxilliped (homologous to the exopod) has no more than five segments and usually only one. In crabs it is broad at the end and forms a transverse fold which serves as the closing end of the canal leading into the branchial chamber. The exopod usually consists of an expanded basal part and a terminal flagellum which is sometimes multisegmented. The expanded basal part, a characteristic feature of Eucyphidea, is otherwise known as the eucyphid appendage. In shrimp the endopod on maxilliped I is bilobate; in crab it is a very elongated structure with a broad proximal and a narrow distal part. In Eryonidea the exopod, and in Oxystomata the endopod; are modified into respiratory tubes.

Maxilliped II. In structure, resembles a pereopod clue to the presence of a five-segmented endopod (the number of segments may be reduced due to the fusion of the basis with the ischium or the fusion of the ischium and merus). In higher members of Eucyphidea the dactyl of maxilliped II is situated not at the end of the propodus, but on its broad lateral side. A segmented or unsegmented exopod is commonly present in maxilliped II. In some groups of decapods, however, the exopod may be totally reduced. An epipod and gill (podobranchia) may also be present.

Maxilliped III. Usually consists of the same elements described for maxilliped II: In shrimp it is long and resembles a pereopod. In many cases (for example, Eucyphidea) the individual segments have fused (for example, the ischium and merus, or the propodus and dactyl, or the basis and ischiomerus), thereby reducing the number of segments. The ischium in Astacura, Palinura, Galatheidea and other primitive Reptantia is armed with a series of teeth used in crushing. In the primitive hermit crab the propodus and dectylus form a small chela. In higher crabs the ischium and merus of maxilliped III are expanded and form an opercular cover for the oral opening. The last three segments of the appendage
are reducd in this process into a palpus, which is often hidden behind the merus.

As in maxilliped II the exopod in maxilliped III is highly variable. It is more frequently joined with the coxa than with the basis. Sometimes (in Sergestidae, Eryonidea, etc.) it may be totally absent. In crabs of family Leucosiidae (Oxystomata) it is broad and forms an operculum for the branchial canal. The epipod, on which a podobranchia is often present, is well developed in crabs.

The oral appendages serve the following functions: grinding of food, passage of fresh water into the gills (scaphognathite), and cleansing of the eyes and antemules (especially the last segment of maxilliped III).

Behind the oral appendages five pairs of pereopods (walking legs) are found-the very feature for which the order Decapoda was established.

Pereopods. In structure, resemble the typical seven-segmented appendage of shrimp. In Reptantia some of the segments or podomeres have fused. In Astacura only the basis and ischium of the chelipeds are fused. In other members of Reptantia (except Eryonidea) the same is true of all the pereopods. Hence these limbs generally appear to be six-segmented. The site of the rupturing which occurred during the autotomy (shedding) of the appendages is evident in the center of these segments. The main bend in the pereopod (knee) occurs in the joint between the merus and carpus. Exopods are present on the pereopods of only some decapods, primarily pelagic shrimp (Oplophoridae, Pasiphaeidae, some members of Atyidae, etc.). They are usually rudimentary (for example, in Penaeidea) or present only in the larvae (mysid stage of Natantia, Astacura, etc.). directed backward. They consist of a narrow proximal part (pedicel) and a distal widened and often bifid lamella. The gills are cleansed with their help. They may be present on all the appendages from maxilliped I to pereopod IV (sometimes V). They are particularly well developed in shrimp and Anomura, but in crab (except for lower Dromiacea) are present only on the maxillipeds.

Since pereopods differ somewhat in function, certain differences are naturally evident in their structure. The first two or three pairs participate in catching prey or in self-defense against predators. Large chelae of variable size are usually present on the first and rarely on the second pereopods (in Penaeidea, Stenopodidea, and Astacura chelae are present on the first three pairs of pereopods). Depending on their structure these chelae are either true or false (see Figure 2) and exhibit a number of modifications. Even within one species the anterior chelae may differ from the posterior, or those on the right legs differ from those on the left.

Generally speaking, the last two or three pairs of pereopods are
locomotory and serve no other function than the animal's movement over ground. In shrimp and lower Reptantia (Palinura, Astacura) these pereopods are very similar in structure. True, in female spiny lobsters small false chelae are evident on the fifth pair of pereopods. In some decapods the last pair of pereopods is reduced (the reduction varying, for example, in pelagic shrimp such as Pasiphaeidae, etc. and hermit crabs) or specialized to perform other functions (for example, the swimming legs of crabs of family Portunidae).

The abdomen has six pairs of appendages; the first five pairs are known as pleopods.

Pleopods (in shrimp). Usually used for swimming by both sexes. They have a typical biramous structure and consist of a very short coxa and a fairly long basis; exo- and endopods are also present. The latter are flagellar or lamellar in structure. A small appendix armed with hooks is usually found on the endopod (appendix interna or stylamblys-in Eucyphidea, Palinura, and Axiidae); it is absent in Penaeidea and Astacura. These appendices link the pleopods of both sides of the body during movement.

In all decapods one or more pairs of pleopods serve as copulatory organs or are adapted for egg-laying. In Penaeidea the endopods of the first pair of pleopods of the male are modified in the form of petasma (see below) which are generally symmetrical but sometimes (Metapenaeopsis) asymmetrical. In the male of Eucyphidea, in addition to the appendix interna, another appendix-appendix masculina-occurs on the second pleopods. In Stenopodidea and Scyllaridea appendages with sexual modifications are absent in the male. In Eryonidae, the first pair, and in Nephropidae and Potamobiidae, the first two pairs are modified into copulatory organs in the male. A somewhat similar feature is also observed in several members of Anomura. In primitive forms of Paguridae the first two pairs of pleopods in the male and sometimes the first pair in the female are modified, while the others on both sides of the body remain typical. In higher hermit crabs appendages with special sexual modifications and the pleopods adjoining the columella (the central column) are absent on the right side of the body; both are present on the left side, however (in Paguropsis the reverse has been observed). In crabs, pleopods I and II in the male are modified into unique rod-like structures; the other pleopods are totally absent. In the female, except for the first pair, as in other decapods (except Penaeidea), they are adapted for egg-laying.

Uropods. Appendages of the sixth abdominal somite (pleopods VI). In all shrimp and primitive Reptantia these appendages together with the telson form the tail fan. A protopodite with foliate outer and inner 1 rami characterizes most uropods. In Scyllaridea only the proximal half
of the rami is hard and calcified, while the distal part is leathery and elastic. In Astacura the exopod is divided into two parts by a transverse suture (dieresis). In typical hermit crabs the uropods are reduced; their outer surfaces are extremely rough and used for attachment of the body to the shell. Uropods are totally absent in Lithodidae and Brachyura and rudimentary in Dromiidae.

Gills. Contained in a branchial chamber in decapods and externally covered by the branchiostegite. Considered lateral cuticular outgrowths they differ in structure and have been divided into three types: (1) phyllobranchiae consisting of a stalk with two series of flat foliate structures; (2) trichobranchiae consisting of a stalk with numerous long and thin tubules; and (3) dendrobranchiae consisting of a stalk on which the tubules are arranged in two rows but are so densely branched that they appear dendroid (Figure 4). Phyllobranchiae are typical of Eucyphidea, most Paguridea and Galatheidea, all Hippidea, and the majority of Brachyura. Trichobranchiae are typical of Eryonidea, Scyllaridea, Astacura, Stenopodidea, Thalassinidea, lower Paguridea, Galatheidea, and Dromiacea. Dendrobranchiae are found only in Penaeidea.

Figure 4. Types of gills found in decapod crustaceans.
$A$-phyllobranchia (general view); $B$-trichobranchia (general view) (from Vinogradov, 1950); $\quad C$-dendrobranchia (cross section) (from Balss, 1926)


The podobranchiae are located on the coxae of the maxillipeds and pleopods*; the arthrobranchiae are attached to the segment between the body and the coxa; the pleurobranchiae are located on the lateral wall of the body. A segment may have one podobranchia, two arthrobranchiae, and one pleurobranchia. However, this arrangement is found only in some of the pereopodal somites in some shrimp; in other shrimp the number of gills may be more or less or even absent on individual somites. For example, pleurobranchiae are absent on maxillipeds I, while podobranchiae and arthrobranchiae are generally absent on pereopods V . The gills and epipods constitute an important taxonomic character which has been expressed in a branchial formula (see Table).

Stridulatory organ. Present in many members of Decapoda. The presence of this organ as well as the peculiarities of its structure are taxonomically important fcatures. In some spiny lobsters of the family Palinuridae the stridulatory organ is situated between the place of attachment of the antennac and the antennules. Unique sounds are produced when these two parts rub against each other. On the basis of 12 this organ all the spiny lobsters of the family have been classified as Silentia (silent) and Stridulentia (shrilling).

Branchial formula for some decapods

|  | Maxillipeds |  |  | Pereopods |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 I | III | I | II | III | IV | V |
| Benthesy- | Ep | Ep, 1Po | Ep, 1Po | Ep, 1 Po | Ep, 1 Po | Ep, 1Po | Ep | - |
| cymus | 1A | $1 \mathrm{~A}, 1 \mathrm{Ple}$ | 2A, 1Ple | 2A, 1Ple | 2A, 1Ple | 2A, 1Ple | 2A, 1 Plc | 1 Ple |
| Pasiphaea |  |  |  | 1A, 1Ple | 1A, 1Ple | 1A, 1Ple | ${ }_{1} \mathrm{Pl}$ | 1 Ple |
| Eupagurus |  |  | 2 A | 2A | 2A | 2 A | 2A, 1 Ple |  |
| Cancer | Ep | Ep, IPo | Ep, 1Po |  |  |  |  |  |
|  |  | 2A | 2 A | 2 A | 1 Ple | 1 Ple |  |  |

Key: Ep-epipod; Po—podobranchia; A—arthrobranchia; Ple—pleurobranchia.
The stridulatory organ is present in a number of crabs and, for the most part, is quite similar in structure and seldom single. A small ridge occurs on the ischium of each cheliped which the crab seesaws against a group of tubercles or a group of small ridges located either on the inner side of the palm of the chela of the same cheliped or on the lower side of the body. In shrimp of the genus Metapenaeopsis the sound-producing mechanism is located on the posterior half of the branchiostegite. The shape and arrangement of the ridges in the stridulatory organ of this genus are of considerable importance in species identifications (see Figure 35).

[^2]Copulatory organs of Penaeidea. In shrimp belonging to Penaeidea the copulatory organs-the petasma and thelycum-are so significant in species identification that they merit special attention (Kubo, 1949).

Petasma. Formed by the fusion of the endopods of pleopods I along their inner margin. As can be seen from Figure 5, the petasmal endopod consists of a median or inner lobe (M.L.) and a lateral lobe (L.L.). Each lobe is divided by a fold into two parts: a dorsal or anterior (d.lo.) and a ventral or posterior ( $v . l o$.) lobule respectively. The ventral lobule of the lateral lobe has three longitudinal ridges on its outer side: $a, b$, and $c$. Ridge $a$ is located near the boundary between the dorsal and ventral lobules; ridge $b$ near the middle line of the outer surface of the ventral lobule; and ridge $c$, usually smaller than the other two, on the outer surface near the ventral margin of the lobule.

$I$ to $V$-Cross sections at about midpoint level of petasma of adult specimens. Gradual complexities in petasma depicted (from Kubo, 1949); M.L.—-median lobe; L.L.—lateral lobe; d.lo.-dorsal lobule; v.lo.-ventral lobule; $a, b$, and $c$-dorsal, median, and ventral ridges respectively of ventral lobule of lateral lobe; I—Aristaeus, Aristeomorpha, Penaeopsis; II-Penaeus, Solenocera, Hymenopenaeus; III-Parapenaeus, Trachypenaeus; IV—Metapenaeus, Parapenaeopsis, Eusicyonia; V-Metapenaeopsis (section through middle of petasma); VI-Metapenaeopsis (section through distal part of petasma, about middle of inner intermediate plane).

In addition to this lobular division, the petasma is characterized by a series of projections or spines peculiar to different genera or species of Penaeidae. The symmetrical structure of the petasma in most shrimp makes it easy to locate these unique ornamentations and use them in species identification. In shrimp of the genus Metapenaeopsis, however, the petasma has lost its typical structure and become highly asymmetrical. To facilitate the identification of shrimp belonging to this genus therefore, the petasmal structure has been detailed in Figure 6.

In shrimp of the genus Metapenaeopsis both the petasmal endopods are divided transversely into approximately equal proximal and distal parts.


13 Figure 6. Diagrammatic sketch of petasma in shrimp of the genus Metapenaeopsis (Racek and Dall, 1965).
$I$-ventral view; $I$-dorsal view: $a$-right distoventral projection; $b$-right distodorsal lobule; $c$-distoventral flap; $d$-distomedian lobule; $\ell$-left distoventral projection; $f$-left distodorsal lobule; $g$--inner intermediate strip; $h$-outer intermediate strip.

The distal part of the right endopod consists of four elements: (a) right distoventral projection, (b) right distodorsal lobule, (c) distoventral flap, 14 and (d) distomedian lobule. The right distoventral projection lies on the distoventral margin of the proximal part. The right distodorsal lobule arises from the distodorsat margin of the proximal part. The distoventral flap is situated on the ventromedian margin of the proximal part of the


Figure 7. Diagrammatic sketch of the thelycum.
A-closed type (Perez Farfante, 1969): 1—anterior process; 2—middle ridge; 3-lateral plate (flap); 4-posterior process; 5-middle projection; B-open type (Perez Farfante. 1971): I-median plate; 1 -anterior part; 2-middle bridge; 3-knob; 4-projection;
endopod, and is partially covered by the distoventral projection and distodorsal lobule.

The distomedian lobule is situated on the basal lateral margin of the distoventral flap and is masked by the right distoventral projection.

The distal part of the left petasmal endopod also consists of four elements: (e) left distoventral projection, $(J)$ left distodorsal lobule, $(g)$ inner intermediate strip, and $(h)$ outer intermediate strip. The distoventral projection is located on the distoventral margin of the proximal part and the distodorsal lobe on the distodorsal margin. The inner and outer intermediate strips are small appendages situated on the distal inner and outer margins of the distodorsal lobule.

Thelycum. Located on the thoracic sterna between pereopods IV and V. It consists of a series of outgrowths, depressions or grooves, plates and Haps. It is meant for the attachment of spermatophores.

Two types of thelycums have been distinguished: the open type (majority of the members of Penaeidae) and the closed type (in most of the shrimps of the genus Penaeus). The latter consists of two lateral plates and a median projection (Figure 7 ).

## II

## TAXONOMY OF ORDER DECAPODA LATREILLE

KEY TO SUBORDERS (FROM BALSS, 1957)
15 1. Carpo-propodal articulation of pereopods only at one fixed point. Pleopods well developed, modified for swimming

Suborder NATANTIA.

- Carpo-propodal articulation of pereopods at two opposite points. Pleopods, if present, highly reduced and not modified for swimming .Suborder REPTANTIA.


## SUBORDER NATANTIA BOAS, 1880

KEY TO TRIBES (FROM BALSS, 1957)

1. Pereopods III chelate. Pleura of first abdominal segment not overlapped by those of second segment. Abdomen without a sharp curve 2.

- Pereopods III never chelate. Pleura of second abdominal segment noticeably overlap those of first segment. Abdomen usually sharply curved . . . . . . . . . . . . . . . . . . . . . Tribe Caridea (Eucyphidea).

2. Pereopods III not stouter than II and I. Males with petasma Tribe Penaeidea.

- Pereopods III (either on both or on one side only) much more robust than II and I. Males without petasma ...Tribe Stenopodidea.

Tribe Penaeidea de Haan, 1849
KEY TO FAMILIES

1. Pereopods IV and V well developed. Gills numerous

Family Penaeidae.

- Pereopods IV and V reduced or absent. Gills few (up to 8) or absent

Family Sergestidae.

## FAMILY PENAEIDAE DANA,

1. Prosarthema present ..... 2.

- Prosarthema absent ..... 3.

2. Postorbital spine absent. Cervical groove short
Subfamily Penaeinae.

- Postorbital spine present. Cervical groove long, either reaching or almost reaching dorsal side of carapaceSubfamily Solenocerinae.

3. Carapace without median dentate crest extending to posterior margin.* ..... 4.

- Carapace with median dentate crest extending dorsally to posterior margin . Subfamily Sicyoninae.

4. Upper antennular flagellum very short, several times shorter than lower oneSubfamily Aristeinae.

- Upper antennular flagellum almost as long as lower one
Subfamily Benthesicyminae.
FAMILY SERGESTIDAE DANA, 1852
KEY TO SUBFAMILIES

1. Carapace moderately compressed laterally. Lower antennularflagellum and gills present . . . . . . . . . . . . .Subfamily Sergestinae.

- Carapace highly compressed laterally. Lower antennular flagellumand gills absentSubfamily Leuciferinae.
Subfamily PENAEINAE Dana, 1852
KEY TO GENERA (FROM DALL, I957, WITH EMENDATIONS AND ADDITIONS)

1. Pleurobranchia on last thoracic somite and epipod on maxillipedIII present. Ventral rostral teeth usually present . . . . . . . . . . . . . 2.

- Pleurobranchia on last thoracic somite and epipod on maxilliped IIIabsent. Ventral rostral teeth absent3.

2. Incisorial process of mandible short, almost rectangular. Bodysmooth. Pterygostomian angle obtuse. Telson without spines orwith three pairs of movable spines . . . . . . . . . . . .Penaeus Fabricius.

- Incisorial process of mandible elongated and saber-shaped. Bodydensely pubescent. Telson with three pairs of immovable spines ...Funchalia Johnson.

[^3]3. Petasma symmetrical. Maxilliped III usually without basial
spine ..............................................................

- Petasma asymmetrical. Maxilliped III with basial spine.

Metapenaeopsis Bouvier.
4. Telson with pair of large inmovable subapical spines. First segment of antennular peduncle with spinc (sometimes very small) on ventral distomedian margin . 5

- Telson without pair of large immovable subapical spines, but often with lateral immovable spines (except in Parapenaeopsis stylifera Milne-Edwards). First segment of antennular peduncle without spine on ventral distomedian margin .8.

5. Telson with less than four pairs of immovable spines. Basis and ischium of pereopod I with one spine each

$$
.6 .
$$

- Telson with four pairs of immovable spines. Basis and ischium of pereopod I without spines ........................Artemesia Bate (one species: A. longinaris Bate, 1838):

6. Carapace with longitudinal sutures ........... Parapenaeus Smith.

- Carapace without longitudinal sutures ............................ 7 .

7. Branchiostegal spine present. Petasma with pair of large spiny distolateral projections ........................... . . Penaeopsis Bate.

- Branchiostegal spine absent. Petasma with pair of tubular distolateral projections ................... Trachypenaeopsis Burkenroad.

8. Exopods present on pereopods II to IV . 9.

- Exopods absent on pereopods II to IV .... .Macropetasma Stebbing (one species: M. africanum Stebbing, 1914).

9. Pleurobranchia present on thoracic somite VII. Exopod absent on percopod V. ............. Metapenaeus Wood-Mason and Alcock.

- Pleurobranchia absent on thoracic somite VII. Exopod present on pereopod V.

$$
10 .
$$

10. Maxilliped II with well-developed exopod. Chela typical in structure 11.

- Maxilliped II without exopod. Chela with short finger and elongated palm ....................... Protrachypene Burkenroad (one species: P. precipua Burkenroad, 1934).

11. Dactyl of pereopods IV and $V$ typical in structure, not divided into secondary segments. Usually not more than distal half of rostrum edentate ........................................................... 12.

- Dactyl of pereopods IV and V markedly elongated, filiform, and divided into secondary segments. Distal two-thirds of rostrum edentate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xiphopenaeus Smith.

12. Carapace with longitudinal sutures. Thelycum with broadly concave anterior plate, rounded anterior margin, and a transverse posterior plate. Ischium of pereopod II without spine .......... 13.

- Carapace without longitudinal sutures. Thelycum with narrow
plate, partly bordered by two narrow posterolateral elevations. Ischial spine present on pereopod II ...... Atypopenaeus (Alcock). 13. Epipod present on pereopod III . . . . . . . . . . . . . . . . . . . . . . . . . 14. - Epipod absent on pereopod III. . . . . . . . . . Parapenaeopsis (Alcock).

14. Rostrum long and slender, reaching far beyond distal margin of scaphocerite. Antennular flagella unequal in length and longer than carapace. Pereopods IV and V slender, much longer than the rest. Exopod of pereopod V extremely reduced

Tanypenaeus Percz Farfante (one species: T. caribeus Perez Farfante, 1972).

- Rostrum short, in length approximately equal to that of scaphocerite. Antennular flagella almost equal in length and shorter than carapace. Only pereopod V slightly longer than the rest. Exopod of pereopod $V$ slightly smaller than those of the rest

Trachypenaeus (Alcock).

## Genus Penaeus Fabricius, 1798

## KEY TO SPECIES

1. Aclrostral grooves reach epigastric tooth or extend slightly beyond it. Gastrofrontal grooves absent
. 2.

- Adrostral grooves almost reach posterior margin of carapace. Gastrofrontal grooves present 13.

2. Subhepatic crest well developed. Thelycum in female, open type. Shrimps inhabit Pacific and Atlantic coasts of North, Central, and South America . 3.

- Subhepatic crest poorly developed or absent. Thelycum in female, closed type. Shrimps inhabit coasts of Australia, Asia, and East Africa (as well as eastern part of Mediterranean Sea)............ 7 .
3 Shrimps inhabit Atlantic coast of North, Central, and South America
.4.
- Shrimps inhabit Pacific coast of North, Central, and South America . 5.

4. Petasma with diagonal crest on inner surface of distal part of lateral lobe; distal ventromedian angle rounded. Thelycum with anterolateral crests facing each other. Pair of fleshy projections on sterna of pereopod (Figure 8) .P. setiferus (L.), 1761.

- Petasma without diagonal crest on inner surface of distal part of lateral lobe; distal ventromedian angle almost forms a right-angle projection. Thelycum with almiost parallel anterolateral crests, sometimes not bent toward each other. Pair of rounded hard outgrowths on sterna of pereopod $V$ (Figure 9).

Figure 8. Penaeus setiferus (L.) (from Percz Farfante, 1969).
$A$-lateral view; $B$-cephalothorax, dorsal view; $C$-thelycum, $D$-petasma.


Figure 9. Penaeus schmitti Burkenroad.
$A$-petasma; $B$-thelycum.
5. Posterior ventral tooth of rostrum situated directly under or ahead of anterior or distal dorsal tooth. Adrostral carinae do not extend beyond epigastric spine. Rostral formula usually $9 / 2$. Thelycum without dense pubescence. Sterna of pereopod $V$ with two ventrally raised even areas in anterior part (Figure 10)
P. vannamei Boone, 1931.

- One or more ventral teeth of rostrum situated beyond distal dorsal tooth. Adrostral carinae extend beyond epigastric spine. Rostral formula usually $8-11 / 4-5$. Thelycum without two ventrally raised areas on anterior part of sterna of pereopod $V$ . 6.

6. Rostral formula usually $8 / 4-5$. Antennular flagellum longer than peduncle. Male with widely spaced spines on middorsal surface of lower (inner) antennular flagellum. Female with distinctly raised triangular area in middle of sterna of pereopod V. Coxa of III, IV, and V pereopods in female with large outgrowths directed toward median line. Thelycum slightly pubescent (Figure 11)

$$
\text { P. stylirostris Stimpson, } 1871 .
$$

- Rostral formula 10-11/3-5. Antennular flagellum either as long as or shorter than peduncle. Male with closely set spines on outer lateral margin of lower antennular flagellum. Female without triangular outgrowth in middle of sterna of pereopod V. Coxa of III, IV, and V pereopods without outgrowths. Thelycum often pubescent (Figure 12) .P. occidentalis Streets, 1871.


Figure 10. Penaeus vannamei Boone.
$A$-petasma; $B$-thelycum.
7. Carapace with well-defined subhepatic carina .....  8.

- Carapace without subhepatic carina ..... 10.

8. Pereopod V without exopod (Figure 13) ..... 1798.

- Pereopod V with a small but distinct exopod .....  9.

9. Postrostal carina with a groove (Figure 14)P. semisulcatus de Haan, 1844.

Figure 11. Penaeus stylirostris Stimpson.
$A$-petasma; $B$-thelycum.



A


Figure 12. Penaeus occidentalis Streets (from Perez Farfante, 1970).
$A$-petasma; $B$-thelycum.

Figure 13. Penaeus monodon Fabricius (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.





C

Figure 14. Penaeus semisulcatus de Haan (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.

Figure 15. Penaeus esculentus Haswell (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.


A


B


C

- Postrostral carina without a groove (Figure 15)
P. esculentus Haswell, 1879.

10. Pereopod III extends beyond distal margin of scaphocerite by at least one finger length 11.

- Pereopod III does not extend up to distal margin of scaphocerite .P. orientalis Kishinouye, 1896.

11. Gastroorbital carina occupies posterior two-thirds of distance be-
tween hepatic spine and orbital angle. Rostral crest moderately high . . . . . . . . . . . . . . . . . . . . . . . P. indicus Milne-Edwards, 1837.

- Gastroorbital carina absent or extends medially only up to one-third of distance between hepatic spine and orbital angle. Rostral crest high 12.

Figure 16. Penaeus merguiensis de Man (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.

12. Rostral crest triangular; adrostral carina does not extend to epigastric tooth (Figure 16) . . . . . . . . . P. merguiensis de Man, 1888.
21 - Rostral crest convex and not triangular; adrostral carina extends just beyond epigastric tooth ...........P. penicillatus Alcock, 1905.
13. Gastrofrontal grooves form a loop; dorsolateral grooves absent on sixth abdominal somite

- Gastrofrontal grooves simple, do not loop; dorsolateral grooves present on sixth abdominal somite

14. Shrimps inhabit Atlantic coast of Africa and North, Central, and South America

- Shrimps inhabit Pacific coast of North, Central, and South America 20.

15. Petasma with long distomedian projections with distal folds, which penetrate deeply into petasma and form large "auricles". Anteromedian corners of lateral plates of thelycum project forward and cover posterior process of median plate (Figure 17)
P. brasiliensis Latreille, 1817.

- Petasma with relatively short distomedian projections with distal folds and do not form "auricles"; height of ventral crest that of
adjacent membranous part. Anteromedian corners of lateral plates of thelycum do not project. Posterior process open. ............ . 16.

16. Distal part of ventral crest of petasma with small spines along free margin, broad, and proximally sharply curved. Anteromedian corners of lateral plates of thelycum mildly divergent. Posterior
22 process of median plate with simple median carina . . . . . . . . . . 17.

- Distal part of ventral crest of petasma unarmed along free margin, almost straight or somewhat arced, broadens gradually, and pooximally curved. Anteromedian corners of lateral plates of thelycum widely divergent. Posterior process with a median, anteriorly bifurcated carina .18.


B


| Figure 17. Penaeus | brasiliensis |  |
| :--- | :---: | :---: |
| Latreille | (from Perez | Farfante, |
| 1969 ). |  |  |

$A$-cephalothorax (dorsal view); $B$-thelycum; $C$-petasma.
17. Dorsolateral gooves of sixth abdominal somite narrow; ratio between height of carina of sixth somite and width of groove (measured approximately at a distance of one-third the length of somite from its posterior margin) usually greater than three; grooves often almost entirely closed (Figure 18) . . . . . . . . P. duorarum Burkenroad, 1939.

- Dorsolateral grooves broad; ratio between carina height and groove width usually less than three
.P. duorarum notialis Perez Farfante, 1967.

18. Adrostral grooves long, almost reaching posterior margin of carapace, posteriorly deep and broad, and width four-fifths to two times greater than width of postrostral carina (measured at

Figure 18. Penaeus duorarum Burkenroad (from Perez Farfante, 1969).
$A$-cephalothorax (dorsal view); $B$-thelycum; $C$-petasma.

posterior one-eighth distance between posterior ends of adrostral grooves up to epigastric tooth)

- Adrostral grooves relatively short, never close to posterior margin of carapace, posteriorly small and tapering, and width one-fifth to three-fourths of width of postrostral carina
.P. aztecus subtilis Perez Farfante, 1967.

19. Median groove of postrostral carina long and deep throughout its length. Dorsolateral grooves broad; ratio between keel height and groove width usually less than three. Distal part of ventral crest of petasma narrows to a cusp, arced, and armed with an outwardly stretched group of closely set teeth on the attached margin. Anterior and posterior processes of median plate of thelycum broad (Figure 19) .P. aztecus Ives, 1891.
23 Median groove short, shallow, and frequently interrupted. Dorsolateral grooves narrow; ratio between keel height and groove width greater than three; grooves often almost closed. Distal part of ventral crest of petasma obtuse, almost straight, and armed with irregularly arranged teeth. Anterior and posterior processes of median plate of thelycum narrow (Figure 20)
.P. paulensis Perez Farfante, 1967.
20. Thelycum with a longitudinal carina in middle of sternite of pereopod V. Ventral surface of lateral plates of spermatheca not pubescent
.P. californiensis (Holmes), 1900.


- Thelycum without longitudinal carina in middle of sterna of pereopod V. Ventral surface of lateral plates of spermatheca pubescent............................. . . . . brevirostris Kingsley, 1878.

21. Coxa of pereopods I, II, and III armed with spines
.P. kerathurus (Forskal), 177.5.

- Coxa of first three pereopods without spines ................... 22.

22. Ischium and basis of pereopod I armed with spines ............ . 23.

- Spines present only on basis of pereopod I. Exceptionally small rounded outgrowth replaces spine on ischium ................. 24.

23. Antennular flagella equal in length to peduncle. Median groove absent on postrostral carina
.P. marginatus Randall, 1840 (P. teraoi Kubo, 1949).

- Antennular flagella no more than half length of peduncle. Median groove present on postrostral carina (Figure 21)
.P. longistylus Kubo, 1943.

Figure 20. Penaeus paulensis Perez Farfante (from Perez. Farfante, 1969).
$A$-cephalothorax (dorsal view); $B$-thelycum; $C$-petasma.



B


Figure 21. Penaeus longistylus Kubo (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.
24. Telson with dorsolateral spine ..... 25.- Telson without dorsolateral spine

24 25. Pair of additional carinae on rostral blade; loop of gastrofrontal grooves trifurcate (Figure 22) .P. plebejus Hess, 1865.

- Rostrum without additional carinae; loop of gastrofrontal grooves bifurcate . 26.

26. Apex of median plate of thelycum rounded; spermatheca cylindrical and not composed of two lateral plates. Adrostral grooves narrower


Figure 22. Penaeus plebejus Hess (from Dall, 1957).
$A$-lateral view; $B$-thelycum;
$C$-petasma.
than postrostral carina $\qquad$ .P. japonicus Bate, 1888. Apex of median plate of thelycum bifurcate; spermatheca consists of two lateral plates. Adrostral grooves equal in width to postrostral carina (Figure 23)
.P. latisulcatus Kishinouye, 1896.


Figure 23. Penaeus latisulcatus Kishinouye (from Dall, 1957). $A$-lateral view; $B$-thelycum; $C$-petasma.

Genus Funchalia Johnson, 1867
KEY TO SPECIES (FROM DALL, 1957)

1. Rostrum with ventral teeth. Antennal spine absent

- Rostrum without ventral teeth. Antennal spine present .....  2.

2. Hepatic spine present in adult specimens. More than 10 rostral teeth present ..... 3.

- Hepatic spine absent in adult specimens. Rostral teeth less than 10. .....  4.

3. Abdominal somite VI with a short carina located below and parallel to the long midlateral carina. Spermatheca open.
F. woodwardi Johnson, 1867.

- Abdominal somite VI with only a long midlateral carina. Sperma-theca consists of a pair of flapsF. danae Burkenroad, 1940.

4. Petasma with a small triangular projection on ventral surface of freedistal part of larger endopod. Thelycum with very small mediancrest behind spermatheca (Figure 24) ...F. villosa (Bouvier, 1905).

- Petasma without projection on ventral surface of distal part of largerendopod. Thelycum with large median dentate tubercle behindspermathecaF. taaningi Burkenroad, 1940.
Genus Xiphopenaeus Smith, 1869
KEY TO SPECIES

1. Shrimps inhabit Atlantic coast of America (Figure 25)
X. kroyeri (Heller, 1862).

- Shrimps inhabit Pacific coast of AmericaX. riveti (Bouvier), 1907.
Genus Parapenaeus Smith, 1885
KEY TO SPECIES (FROM DALL, 1957)

1. Branchiostegal spine present. Pereopod V does not reach end of scaphocerite ..... 2.

- Branchiostegal spine absent. Pereopod V exceeds scaphocerite by length of dactyl P. longipes Alcock, 1905.

2. Branchiostegal spine on anterior margin of carapace .....  3.

- Branchiostegal spine slightly behind anterior margin of carapace ..... 7.

3. Abdominal somite VI less than twice length of somite V . ..... 4.

- Abdominal somite VI a little more than twice length of somite V .
.P. americanus Rathbun, 1901.

4. Process " $a$ " of petasma bifurcate and directed laterally ..... 5.
26 - Process "a" simple and pointed and directed distally .....  6.
5. Process "b" of petasma long and sharply pointed. Process "d"


Figure 24. Funchalia villosa (Bouvier). $A$-lateral view; $B$-thelycum; $C$-petasma.
present. Thelycum consists of anterior intermediate and posterior plates .P. fissurus (Bate), 1888.

- Process " $b$ " short and obtuse; process " $d$ " absent. Thelycum consists of anterior and posterior median bosses and two pairs of anterior and posterior lateral bosses
P. sextuberculatus Kubo, 1949.

6. Process "d" of petasma well developed. Adrostral carina terminates


Figure 25. Xiphopenaeus kroyert (Heller, 1862) (from Williams, 1965).
$A$-frontal part of cephalothorax (lateral view); $B$-thelycum; $C$-petasma.
behind rostral teeth. Longer antennular flagellum shorter than antennular peduncle (Figure 26) . . . . . . . P. australiensis Dall, 1958.

- Process "d" small and dentiform. Adrostral carina almost reaches epigastric tooth. Longer antennular flagellum longer than antennular peduncle
.P. lanceolatus Kubo, 1949.

7. Rostrum reaches distal end of first segment of antennular peduncle. Abdominal somite VI more than twice length of somite V
P. investigatoris Alcock and Anderson, 1899.
8. Rostrum reaches rostraI* distal end of second segment of antennular peduncle. Abdominal somite VI slightly less than twice length of somite V (Figure 27) ................... P. longirostris (Lucas, 1849).


Figure 26. Parapenaeus australiensis Dall (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma (dorsal view); $D$-petasma (ventral view).

## Genus Parapenaeopsis (Alcock), 1901

## KEY TO SPECIES

1. Shrimps inhabit shelf of Western Africa ....P. atlantica Balss, 1926.

- Shrimps inhabit Indian and Pacific Oceans ....................... 2.

2. Mastigobranchiae present on pereopods I and II ................ . 8 .

27 - Mastigobranchiae absent on pereopods I and II ................ 11.
3. Pereopod I with basial spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 .

- Pereopod I without basial spines ................................... . . 10.

4. Pereopod II with basial spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 .

- Pereopod II without basial spines .........P. uncta (Alcock), 1905.

[^4]

Figure 27. Parapenaeus longirastris (Lucas), (from Williams, 1965). $A$-cephalothorax (lateral view); $B$-petasma (dorsal view); $C$-petasma (ventral view).
5. Telson with pair of immovable subapical spines. At least distal half of free portion of rostrum unarmed
.P. stylifera (Milne-Edwards), 1837.

- Telson without subapical spines and with or without movable lateral spines. One-third or less of free portion of rostrum unarmed . 6.

6. Petasma with pair of long, slender, caliper-like distolateral projections directed forward. Thelycum with median tuft of long setae behind posterior edge of last thoracic sternite . . . . . . . . . . . . . . . . 7 .

- Petasma with pair of distolateral projections directed laterally or distolaterally, usually short and spout-like. ...................... 8 .

7. Pereopod III of female with basial spine. Rostrum with 9 to 11 teeth. Postrostral carina convex and extends to posterior margin of carapace ........................... P. maxillipedo (Alcock), 1905.

- Pereopod III of female without basial spine. Rostrum with 7 to 8 teeth. Postrostral carina straight and does not extend to posterior margin of carapace (Figure 28) .... .P. cornuta (Kishinouye), 1900.

8. Postrostral carina almost reaches posterior margin of carapace. Petasma with pair of short, spout-like distolateral projections and pair of cap-like distal projections.
. 9.

- Postrostral carina occupies three-fourths length of carapace. Petasma with pair of distolateral projections directed laterally. Cap-


Figure 28. Parapenaeopsis cornuta (Kishinouye) (from Dall, 1957).

$$
A \text {-lateral view; } B \text {-thelycum; } C \text {-petasma. }
$$

like distal projections absent. .P. nana (Alcock), 1905.
9. Antennular flagella equal to 0.5 to 0.6 of carapace length. Thelycum with median tuft of setae on posterior plate (Figure 29)
.P. sculptilis (Heller), 1862.

- Antennular flagella equal to 0.7 or more of carapace length. Thelycum without median tuft of setae on posterior plate
.P. hardwickii (Miers), 1878.


Figure 29. Parapenaeopsis sculptilis (Heller) (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.
10. Epigastric spine present (species restricted to Pacific coast of America) ..................................... . P. balli Burkenroad.

- Epigastric spine absent . .................. . P. gracillima Nobili, 1903.

11. Epigastric spine present .............................................. 12.

- Epigastric spine absent .............................................. 13.

12. Rostrum extends somewhat beyond tip of antennular peduncle. Longitudinal suture about 0.9 carapace length from anterior margin .P. hungerfordi (Alcock), 1905.

- Rostrum short, reaching tip of first segment of antennular peduncle. Longitudinal suture extends to hepatic spine.
.P. venusta de Man, 1907.

13. Anterior plate of thelycum with Z-shaped posterior edge. Two accessory crests on anterior edge of posterior plate. Rostrum with proximal one-third raised from carapace and remaining portion more or less horizontal. Antennular flagella equal in length to pedunclc (Figure 30) . . . . . . . . . . . . . . . . . . . P. tenella (Bate), 1888.

- Anterior plate of thelycum with more or less straight transverse posterior edge. No accessory crests on anterior edge of posterior plate. Rostrum inclined at an angle to carapace throughout its length. Antennular flagella half as long as peduncle
.P. acclivirostris Alcock, 1905.


Figure 30. Parapenaeopsis tenella (Bate) (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.

$$
\text { Genus Atypopenaeus Alcock, } 1906
$$

KEY TO SPECIES (FROM STAROBOGATOV, 1972)

1. Hepatic groove present .................................................. 2.

- Hepatic groove absent (Figure 31)
. ........ . A. formosus Dall, 1957. A. stenodactylus (Stimpson), 1860.

2. Hepatic spine present $\qquad$

- Hepatic spine absent .A. dearmatus de Man, 1907.


> Figure 31. Atypopenaeus formosus Dall (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma (dorsal view).

## Genus Trachypenaeopsis Burkenroad, 1934

KEY TO SPECIES (FROM ANDERSON AND LINDNER, 1945)

1. Species inhabits Atlantic coast of America
T. mobilispinis (Rathbun).

- Species inhabits Indo-Pacific region
T. richtersii (Miers), 1884.


## Genus Trachypenaeus Alcock, 1901

KEY TO SPECIES (FROM DALL, 1957, WITH ADDITIONS)

1. Epipods (mastigobranchiae) present on pereopods I and II ..... 2.

- Epipods absent on pereopods I and II

8. 
9. Small spine present on ischium of pereopod I. No basial spine on maxilliped III. Carapace with longitudinal suture which does not surpass hepatic spine

- Ischium of pereopod I without spine. Maxilliped III with basial spine. Carapace with longitudinal suture which surpasses hepatic spine . 4.

3. Rostrum does not extend beyond distal margin of eyes. Telson with four pairs of lateral spines (species inhabits Pacific coast of America) . .......................... T. brevisuture Burkenroad, 1934.

## - Rostrum extends beyond distal margin of eyes. Telson with three or

 four pairs of lateral spines (species inhabits Indo-Pacific region) (Figure 32) . ......................T. curvirostris (Stimpson), 1860.4. Telson without spines* (Pacific coast of America)
T. byrdi Burkenroad, 1934.

- Telson with spines* . 5.


Figure 32. Trachypenaeus curvirostrrs (Stimpson) (from Dall, 1957).

$$
A \text {-lateral view; } B \text {-thelycum; } C \text {-petasma (ventral view). }
$$

5. Rostrum with 7 to 10 teeth, usually 8 or more .....  6.

- Rostrum with 6 or 7 teeth .....  7.6. Exopod of pereopod $V$ does not reach distal end of its basis. Telsontapers gradually to a point but with feeble proximal shoulder. Colororange or redT. similis (Smith, 1885).

30 - Exopod of pereopod V reaches distal end of its basis or extends beyond it. Telson with distinct subapical shoulder. Color pale lilac or chocolate (Figure 33)
.T. constrictus (Stimpson), 1871.
7. Posteriormost pair of lateral spines on telson immovable.

[^5]

Figure 33. Trachypenaeus constrictus (Stimpson) (from Williams, 1965). Lateral view.
T. fuscina Perez Farfante, 1971.

- Posteriormost pair of lateral spines on telson movable
T. faoea Loesch and Avila, 1964.

8. Anterior plate of thelycum with prominent longitudinal crest (male not known)
T. pescadoreensis Schmitt, 1926.

- Anterior plate of thelycum flat or concave (except for posterior margin) . 9.
31 9. Distolateral projections of petasma anteriorly directed ......... 10.
- Distolateral projections of petasma laterally directed (Figure 34)
T. fulvus Dall, 1957.


Figure 34. Trachypenaeus fulvus Dall. Lateral view.
10. Distolateral projections of petasma with blunt ends; extend to coxa of pereopod III. Posterior plate of thelycum Z-shaped and envelops an open oval depression (Figure 35) . . . . .T. anchoralis (Bate), 1888.

- Distolateral projections of petasma with sharp ends; extend to coxa of pereopod IV. Anterior plate of thelycum with ligulata protuberance which extends to posterior plate (Figure 36)
T. granulosus (Haswell), 1879.


Figure 35. Trachypenaeus anchoralis (Bate) (from Dall, 1957). $A$-lateral view; $B$-thelycum; $C$-petasma (dorsal view).


Figure 36. Trachypenaeus granulosus (Haswell) (from Dall, 1957). $A$-lateral view; $B$-thelycum; $C$-petasma.

## Genus Penaeopsis (Bate, 1881)

## KEY TO SPECIES

1. No more than 14 rostral teeth (excluding epigastric); none situated on carapace ........................................................ 2.

- Usually 18 rostral teeth; one located on carapace
.P. megalops Smith, 1885.

2. Rostrum slightly decurved; teeth 10 to 14 . Hepatic spine at level of antennal one. Pterygostomian spine located just above anterolateral corner of carapace (Figure 37) ........... P. rectacuta (Bate, 1888).

- Rostrum slightly upcurved; teeth 9 to 10 . Hepatic spine below antennal one, situated midway between antennal and pterygostomian spines. Pterygostomian spine situated at farthest anterolateral corner of carapace . ............................. . serrata Bate, 1888.


Figure 37. Penaeopsis rectacuta Bate (from Kubo, 1949).
$A$ —petasma (dorsal view); $B$ —petasma (ventral view); $C$-thelycum.

# Genus Metapenaeopsis Bouvier, 1905 (from Anderson and Lindner, 1945; Racek and Dall, 1965; and Perez Farfante, 1971) 

## KEY TO SPECIES

1. Shrimps inhabit Pacific coast of America and Atlantic Ocean ....2.

- Shrimps inhabit Indo-West-Pacific region ..................... . 10.

2. Shrimps inhabit Atlantic Ocean . ................................... . . . 3.

- Shrimps inhabit Pacific coast of America ......................... 8.

3. Shrimps inhabit Atlantic coast of Africa
.M. miersi Holthuis, 1952.

- Shrimps inhabit Atlantic coast of America ...................... . 4 .

4. Thelycum with median plate with U-shaped marginal strip and coiled lateral strips. Petasma with distoventral lobe deeply cleft into two long, subequal lobules (Figure 38)


Figure 38. Metapenaeopsis smithi (Schmitt).
$A$-thelycum; $B$-petasma (ventral view); $C$-petasma (dorsal view).

- Thelycum with median plate without U-shaped marginal strip and coiled lateral strips. Petasma with simple distoventral lobe forming single lobule, or divided by shallow sinus into two subequal or unequal lobules.
. 5.

5. Thelycum with anteromedian part of transverse plate highly depressed; median plate with prominent bosses with posterolateral angles produced. Petasma with projection forms one lobe (Figure 39)
.M. hobbsi Perez Farfante, 1971.

- Thelycum with anteromedian part of transverse plate raised; median plate with bosses with posterolateral angles not produced. Distoventral projection of petasma divided by a shallow sinus into two lobules
. 6.

6. Thelycum with anterior part of median plate convex, with two large bosses. Distoventral projection of petasma mitten-shaped; large left lobule extends far beyond small right lobule (Figure 40).
.M. gerardoi Perez Farfante, 1971.


B


A

Figure 39. Metapenaeopsis hobbsi Perez Farfante.
$A$-thelycum; $B$-petasma (ventral view); $C$-petasma (dorsal view).


Figure 40. Metapenaeopsis gerardoi Perez Farfante.
$A$-thelycum; $B$-petasma (ventral view); $C$-petasma (dorsal view).

- Thelycum with anterior part of median plate concave, with two small bosses. Distoventral projection of petasma distally divided into two subequal or equal lobules; if unequal, larger lobule does not extend distally much beyond smaller one

7. Thelycum with anterior part of median plate long, constituting at least half length of plate. Distoventral projection of petasma divided into two unequal lobules; right lobule much larger than left (Figure 41) .M. goodei (Smith), 1885.

- Thelycum with anterior part of median plate short, less than half
length of plate. Distoventral projection of petasma divided into two subequal lobules; left lobule slightly larger than right (Figure 42)
M. martinella Perez Farfante, 1971.


Figure 41. Metapenaeopsis goodei (Smith) (from Perez Farfante, 1971).
$A$-general view; $B$-thelycum; $C$-petasma (ventral view); $D$-petasma (dorsal view).
8. Basis of pereopod II unarmed ............. M. kishinouye (Rathbun).

- Basis of pereopod II armed .9.

9. Rostrum with 9 to 10 teeth (together with epigastric one).
M. beebei Burkenroad.

- Rostrum with 11 to 12 teeth ...............M. mineri Burkenroad.

10. Anteromedian spine on basal segment of antennule small and barely noticeable. Thelycal plate without posterior processes (platelets) ................................................................... 11.
34 - Anteromedian spine on basal segment of antennule well developed. Thelycal plate with posterior processes. . ....................... . 32.
11. Stridulatory organ present on posterior margin of branchiostegite 12.

- Stridulatory organ absent on posterior margin of branchiostegite

21. 
22. Rostrum distinctly sinuate. Length of abdominal somite VI more than twice its height near posterior end. Right lobe of petasma slightly longer than left (Figures 43 and 44).
M. sinuosa Dall, 1957.

35 - Rostrum slightly sinuate, straight, or upcurved. Length of abdominal somite VI less than twice its height near posterior end. Left lobe


Figure 42. Metapenaeopsis martinella Perez Farfante.
$A$-thelycum; $B$ —petasma (ventral vicw); $C$ —petasma (dorsal view).
of petasma much longer than right ............................... 13 .
13. Dorsal carina of abdominal somite III grooved .................. 14.

- Dorsal carina of abdominal somite III raised or flat . ........... 19.

14. Groove narrow and deep. Stridulatory organ low and highly curved; anterior ridge small and indistinct in front. Intermediate plate of thelycum with a deep transverse groove in posterior part ...... 15.

- Groove broad and small. Stridulatory organ high and moderately curved or almost straight, anterior ridge broad. Intermediate plate of thelycum with broad but shallow depression ................. 18.

15. Pterygostomian spine very large (see Figure 43, C) .M. crassissima Racek and Dall, 1965.

- Pterygostomian spine small or medium in size . .................. 16.

16. Left lobe of petasma with radial processes originating from U-shaped distal part (Figure 45) ...M. rosea Racek and Dall, 1965.

- Left lobe of petasma with radial processes originating from conical or pyriform part ...................................................... . 17.


34 Figure 43. Arrangement and shape of stridulatory organ in some species of Metapenaeopsis (from Racek and Dall, 1965).
$A —$. novaeguineae; $B-M$ palmensis; $C-M$. crassissima; $D —$. rosea; $E-M$. stridulans; $F-$ M. sinuosa; $G-$ M. barbata; $H —$. dura; $I-$ M. acclivis.


Figure 44. Metapenaeopsis sinuosa Dall (from Dall, 1957).

$$
A \text {-dorsal view; } B \text {-thelycum; } C \text {-petasma. }
$$

17. Apical processes irregularly scattered along tip of pyriform base. Rostrum moderately upcurved. Stridulatory organ consists of 15 to 20 ridges. Species found off Malaysia .......M. toloensis Hall, 1962.

- Apical processes originate radially from conical base. Rostrum highly upcurved. Stridulatory organ consists of 28 to 35 ridges. Species found off Japan (see Figures 43 and 46)
M. dura Kubo, 1949.


Figure 45. Metapenaeopsis rosea Racek and Dall (from Racek and Dall, 1965). Lateral view.


Figure 46. Metapenaeopsis dura Kubo (from Dall, 1957).
$A$-cephalothorax (lateral view); $B$-thelycum.
18. Stridulatory organ moderately curved. Anterior margin of thelycal plate slightly serrated. Left lobe of petasma distally broad. Rostrum slightly raised and straight, with teeth closely set (see Figure 43, B) .M. palmensis (Haswell), 1879—M. velutina (Bate)M. barbeensis (Hall).

- Stridulatory organ almost straight. Anterior margin of thelycal plate entire. Left petasmal lobe sharply pointed and triangular. Rostrum low and horizontal, with teeth widely scattered (Figure 47)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. stridulans (Alcock), 1905.

19. In female coxal plates of pereopod $V$ separated by a narrow space which is much larger than thelycal plate (see Figure 43,I)
.M. acclivis (Rathbun, 1902).

- In female coxal plates of pereopod V separated by a broad space


Figure 47. Metapenaeopsis stridulans (Alcock) (from Racek and Dall, 1965). $A$-cephalothorax (lateral view); $B$-petasma.
which is smaller than thelycal plate . 20.
20. Thelycal plate larger in width than in length. Left petasmal lobe with processes arranged in a circle. Inner intermediate strip of same length as outer (see Figure 43, $A$ and Figure 48)
.M. novaeguineae (Haswell), 1879.

- Thelycal plate with equal width and length. Left petasmal lobe with processes arranged in a semicircle. Inner intermediate strip much longer than outer (see Figure 43, G).


Figure 48. Metapenaeopsis novaeguineae (Haswell) (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.
.M. barbata (de Haan), 1850—M. akayebi Rathbun.
21. Epigastric tooth situated a little posterior to middle of carapace. Scaphocerite twice as long as wide . . .M. lamellata (de Haan), 1850.

- Epigastric tooth situated at one-fourth length of carapace from its anterior margin. Scaphocerite much more than twice as long as wide .22.

22. Female with two median spines, one behind the other, on sternum between pereopods IV and V ........M. evermani (Rathbun), 1906.

- In female sternum between pereopods IV and V merely a transverse plate . 23.

23. In female no spiny processes on sternum of pereopod II .M. velutina (Dana), 1902.
37 - In female two long spiny processes present on sternum of pereopod II . 24.
24. Hepatic groove descends almost vertically toward ventral margin of branchiostegite (Figure 49) . . . . . . . . M. borradaili (de Man), 1910.

- Hepatic groove absent or does not reach branchiostegite ...... 25 .


Figure 49. Metapenaeopsis borradaili (de Man) (from Dall, 1957).
$A$-cephalothorax (lateral view); $B$-thelycum.
25. One or two pairs of dentiform projections situated immediately behind thelycal plate .26.

- Dentiform projections situated immediately behind thelycal plate absent . 27.

26. Pair of small sharp projections behind thelycal plate have a pair of sharp tubercles on the posterior margin of their base (Figure 50) .. .M. distincta (de Man), 1907.

- Pair of dentiform projections behind thelycal plate without posterior tubercles (Figure 51)
.M. mogiensis (Rathbun) 1902-(M. hilarula) (de Man).

27. In female pair of spiny anterolateral processes absent on anterior sternal plate between pereopod V ; triangular plate present on sternum between pereopod III


Figure 50. Metapenaeopsis distincta (de Man) (from Racek and Dall, 1965).
$A$-lateral view; $B$-thelycum.


Figure 51. Metapenaeopsis mogiensis (Rathbun) (from Dall, 1957).
$A$-lateral view; $B$-thelycum.

- In female pair of spiny anterolateral processes present on anterior sternal plate between pereopod V ; triangular plate absent on sternum between pereopod III . . . . . . . . . . . . . . . . . . . . . . . . . . 29.

28. In female triangular plate on sternum between pereopod III sharply pointed toward anterior end; in male sternum between pereopod II with pair of long spiny processes. Upper margin of rostrum distinctly convex (Figure 52) .......M. quinquedentata (de Man), 1907.

- Triangular plate rounded anteriorly. In male sternum between pereopod II without spiny processes. Upper margin of rostrum slightly concave (Figure 53) . . . . . .M. insona Racek and Dall, 1965.

29. In female sternum between pereopod III without processes. Anterior sternal plate between pereopod V with large triangular


Figure 52. Metapenaeopsis quinquedentata (de Man) (from Racek and Dall, 1965).

> Petasma.


Figure 53. Metapenaeopsis insona Racek and Dall (from Racek and Dall, 1965).
Petasma.
process in center .M. dalei (Rathbun), 1902.

30. Sternum between pereopod III with a concave trapezoid plate which narrows posteriorly. Rostrum short and distinctly raised (Figure 54) .M. tarawensis Racek and Dall, 1965.

- Sternum between pereopod III with pair of obtuse processes. Rostrum sharply pointed and not raised. . .M. incompta Kubo, 1949.

31. Posterior margin of posterior process of thelycal plate bifurcate ...

- Posterior margin of posterior process of thelycal plate simple and pointed .36.

32. Rostrum equal in length or longer than antennular peduncle ..... 33.

- Rostrum does not reach distal end of antennular peduncle ..... 35.

33. Right petasmal lobe slightly larger than left M. sibogae (de Man), 1907.

- Left petasmal lobe slightly larger than right ..... 34.

34. Posterior process of thelycal plate with indistinct median groove and sharp posterolateral corners


Figure 54. Metapenaeopsis tarawensis Racek and Dall (from Racek and Dall, 1965).

$$
A \text {-cephalothorax (lateral view); } B \text {-thelycum; } C \text {-petasma. }
$$

- Posterior process of thelycal plate with distinct median groove and rounded posterolateral corners
.M. philippi (Bate) 1881-(M. philippinensis [Bate]).

35. Rostrum reaches posterior one-third of second antennular segment. Center of thelycal plate with pair of short parallel ridges, forming a short median groove (Figure 55)
.M. provocatoria Racek and Dall, 1965.

- Rostrum reaches anterior one-third of third antennular segment. No grooves in center of thelycal plate M. coniger (Wood-Mason), 1891. 36. Abdomen dorsally carinate posterior to first somite


Figure 55. Metapenaeopsis provocatoria Racek and Dall (from Racek and Dall, 1965). $A$-lateral view; $B$-thelycum; $C$-petasma.

Figure 56. Metapenaeus macleayn
(Haswell) (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.

.M. lata Kubo, 1949.

- Abdomen dorsally carinate posterior to second somite M. kyushuensis (Yokoya), 1933.

Genus Metapenaeus Wood-Mason and Alcock, 1891

KEY TO SPECIES (FROM RACEK AND DALL, 1965)

1. Telson armed with three or four pairs of well-defined movable spines . 2.

- Telson with solitary row of very small movable spines, and with or without one to two pairs of fairly large distal spines . . . . . . . . . . 3.*

2. Telson with three pairs of almost identical spines. Rostrum straight and dentate up to tip . 3.

- Telson with four pairs of spines which gradually increase in size posteriorly. Rostrum sigmoid; anterior half edentate and acicular (Figure 56) . . . . . . . . . . . . . . . . . . . . . . . . . . M. macleayi (Haswell).

3. Branchial part of carapace with small depressed areas. Long and dagger-shaped projections on coxa of pereopod IV.** Thelycum with rounded median boss posterior to lateral plates. Distomedian projections of petasma without anterolateral spiny processes

$$
\text { M. intermedius (Kishinouye), } 1900
$$

- Branchial part of carapace with two large depressed areas. Female with straight conical spines on coxa of pereopod IV. Thelycum without rounded boss posterior to lateral plates. Distomedian projections of petasma with distinct anterolateral spiny processes (Figure 58) . . . . . . . . . . . . . . . . . . . . M. endeavouri (Schmitt), 1926.

4. Distomedian projection of petasma with well-developed or reduced

[^6]apical filament. Thelycum of impregnated female usually with white conjoined pads

- Distomedian projection of petasma without apical filament. Thelycum of impregnated female without white conjoined pads
.9.



B


Figure 57. Metapenaeus ensis (de Haan) (from Kubo, 1949).
$A$-lateral view; $B$-thelycum; $C$-petasma.
5. Rostrum broad and short; does not reach distal end of basal antennular segment. Thelycum with ovate anterior and lateral plates of subequal size; conjoined pads usually set askew. Apical filaments of petasma reduced and represented by pair of rounded bosses .M. lysianassa (de Man), 1888.

- Rostrum projects beyond basal antennular segment; distal part edentate . 6.

6. Posterior part of rostrum with fairly distinct carina. Basial spine on pereopod III of male simple

- Posterior part of rostrum without distinct carina. Basial spine on pereopod III of male long and sharp . 8.

7. Basial and ischial spines on pereopod I subequal. Telson usually with pair of distal spinules. Distolateral projections of petasma directed outward; apical filaments of distomedian projection slender and slightly convergent. Thelycum with a large anterior and small lateral plates . . .....M. brevicornis (H. Milne-Edwards), 1837.

- Ischial spine of pereopod I slightly smaller than basial spine. Telson usually with two pairs of distal spinules. Distolateral projections of petasma directed forward; apical filaments of distomedian projection spatulate. Thelycum with a small anterior and very large lateral plates .M. tenuipes Kubo, 1949-(M. spinulatus Kubo).

8. Apical filaments of petasma indistinct. Anterior thelycal plate ligu-
late
M. dobsoni (Miers), 1878.

- Apical filaments of petasma large, spatulate, and dorsally curved. Anterior thelycal plate with sharp point
M. joyneri (Miers), 1880.

9. Branchiocardiac groove distinct in at least posterior third of carapace. Distomedian projections of petasma flap-like......... 10.

- Branchiocardiac groove almost completely absent. Distomedian projections of petasma anteriorly filiform and with serrate ventral margin
.M. stebbingi (Nobili), 1904.

10. Ischial spine of pereopod I distinct 11.

- Ischial spine of pereopod 1 small or absent ...................... 13.

11. Ischial and basial spines of pereopod 1 subequal. Tips of petasma curved at a $30^{\circ}$ angle in relation to median line and semicircular. Anterior plate of thelycum in the form of a depression. Lateral plates with raised ventral carinae with anterolateral and posteromedian spiny processes . . . . . . . . . . . . . M. suluensis Racek and Dall, 1965.

- Ischial spine much smaller than basial spine. Anterior thelycal plate ligulate

12. Distomedian projections of petasma directed anteriorly. Lateral thelycal plates with raised lateral carinae, each with a posterior incurved triangular plate. Species found eastward of the Strait of Malacca (Figure 57) ......M. ensis (de Haan) 1850-(M. mastersii [Haswell])—M. incisipes (Bate).

- Distomedian projections of petasma directed anterolaterally. Lateral thelycal plates with only raised and parallel lateral carinae. Species found westward of the Strait of Malacca
.M. monoceros (Fabricius), 1798.

13. Ischial spine of pereopod I small and obtuse ....................... . .

- Ischial spine absent 17.

14. Teeth on rostrum arranged more or less uniformly. Thelycum open at posterior end 15.

- Rostral teeth random in arrangement: first two teeth separated from each other and from rostral tip by a greater distance. Thelycum closed at posterior end
.M. demani (Roux), 1922.

15. Distomedian projections of petasma divided into two lobes which almost completely cover distolateral projections from above. Lateral thelycal plates reniform with highly raised ventrolateral ridges M. conjunctus Racek and Dall, 1965.

- Distomedian projections of petasma more or less superficially divided into two lobes which do not cover distolateral projections from above. Lateral thelycal plates in the form of a small arc with raised lateral ridges

16. 
17. Distomedian projections of petasma directed anteriorly. Parallel longitudinal grooves indistinct. Posterior end of raised ridges on



B


C

Figure 58. Metapenaeus endeavouri (Schmitt) (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.
lateral plates of thelycum curves outward. Spine on merus of pereopod V slants inward slightly in male $\qquad$
.M. papuensis Racek and Dall, 1965.

- Distomedian projections of petasma directed anterolaterally and divergent. Longitudinal grooves distinct. Posterior end of ridges on lateral plates of thelycum incurved. Spine on merus of pereopod V slants outward slightly in male $\qquad$
.M. elegans (de Man) 1907-(M. singaporensis Hall).

17. Distal part of rostrum edentate. Anterior thelycal plate blunt. Lateral plates large and separated by narrow suture (Figure 59)
.M. eboracensis Dall, 1957.


Figure 59. Metapenaeus eboracensis Dall (from Dall, 1957).
$A$-lateral view; $B$-thelycum; $C$-petasma.

## - Distal part of rostrum dentate

18. Branchiocardiac carina distinct, extending from posterior margin of carapace almost up to hepatic spine. Anterior plate of thelycum longitudinally grooved, broader posteriorly than anteriorly. Distomedian projection of petasma sigmoid
M. affinis (H. Milne-Edwards), 1837-(M. mutatus Lanchester)M. necopinans Hall.

- Branchiocardiac carina faint or poorly defined; anterior end does not extend beyond posterior third of carapace 19.

19. Anterior thelycal plate ligulate with a pair of anterolateral rounded tubercles. Lateral plates with characteristic patches of dense setae. Distomedian projections of petasma highly divergent, each in the form of a broad and outwardly curved tooth (Figure 60)
.M. insolitus Racek and Dall, 1965.

- Anterior thelycal plate ampullar with longitudinal ridges in the center. Distomedian projections of petasma digitiform ........ . 20 .

20. Anterior margin of anterior thelycal plate with three tubercles . . 21 .

Figure 60. Metapenaeus insolitus Racek and Dall (from Racek and Dall, 1965).
$A$-lateral view: $B$-thelycum; $C$-petasma.


- Anterior margin of anterior thelycal plate with two fang-shaped teeth and an indistinct tubercle. Petasma with slightly divergent tubercular distomedian projections . ........ . M. dalli Racek, 1957.

21. Median tubercle more raised than marginate ones. Distal margin of anterior thelycal plate distinctly triangular. Petasma with almost parallel distomedian projections; distal half of latter dorsoventrally sinuate (Figure 61)
.M. bennettae Racek and Dall, 1965.

- All tubercles identical in size. Distal margin of anterior thelycal plate convex to indistinctly triangular. Petasma with laminose and


Subfamily SOLENOCERINAE Wood-Mason, 1891

## KEY TO GENERA (ANDERSONAND LINDNER, 1945)

1. Antennular flagella foliate and together form a tube which acts as a siphon
.Solenocera Lucas.

- Antennular flagella round in cross section and filiform .......... . 2.

2. Podobranchiae present on maxilliped III and all pereopods. Telson with several pairs of movable lateral spines anterior to distal pair of immovable teeth. Prosarthema in the form of a short, rough outgrowth .Haliporus Bate.

- Podobranchiae absent on maxilliped III and all pereopods. Telson with only one pair of lateral spines. Prosarthema in the form of a long elastic scale .Hymenopenaeus Smith.


## Genus Solenocera Lucas, 1849

KEY TO SPECIES FROM ATLANTIC OCEAN AND PACIFIC COAST OF AMERICA ${ }^{l}$ (FROM LINDNER AND ANDERSON, WITH ADDITIONS)

1. Shrimps inhabit Atlantic and Pacific coasts of America .......... .2.

- Shrimps inhabit Mediterranean Sea and waters near western and southern coasts of Africa (Figure 62)
. . .S. membranacea (H. Milne-Edwards), 1837-(S. africana Stebbing).

[^7]2. Shrimps inhabit Atlantic coast of America ..... 3.

- Shrimps inhabit Pacific coast of America .....  6.

3. Number of rostral teeth vary from 8 to 10 , usually 9. Postrostral carina high and sharp with a deep notch at level of cervical groove . .S. vioscai Burkenroad.

- Number of rostral teeth vary from 5 to 7, usually 6. Postrostral carina absent or low, with a slight notch at level of cervical groove


A


B

Figure 62. Solenocera membranacea (H. Milne-Edwards), 1837.
$A$-petasma; $B$-thelycum (drawn by Yu. M. Froermana).
4. Scaphocerites long, extending beyond end of antennular peduncle by at least $13 \%$ of their length. Feeble tooth located on orbital corner. Pterygostomian spine long and with a broad base
.S. necopina Burkenroad.

- Scaphocerites short, shorter than antennular peduncle. Antennules longer than scaphocerites by about $8 \%$ of their length. Welldeveloped tooth located on orbital corner. Pterygostomian spine small and with a narrow base . 5.

5. Chela of pereopod I significantly shorter than carpus; finger almost twice length of palm. End of distolateral petasmal lobe directed distally. Projections of thelycum located between bases of last pair of pereopods and smoothly rounded ...S. atlantidis Burkenroad, 1939.

- Chela of pereopod I barely shorter than propodus; finger 2.0 to 2.5 times longer than palm. End of distolateral petasmal lobe inwardly directed toward median line. Projections of thelycum located between bases of last pair of pereopods and with distinct tubercles at apex.
.S. geijskesi Holthuis, 1959.

6. Number of teeth on rostrum varies from 8 to 10 , usually 9 . Base of pterygostomian spine merges into margin of carapace with a smooth curve
S. agassizii Faxon, 1893.

- Number of teeth on rostrum varies from 6 to 8 , usually 7. Base of
pterygostomian spine merges into margin of carapace at a right angle

7. Sternum of pereopod IV in female sharply incurved along posterior margin. Median lobules of distolateral lobe of petasma almost rectangular
S. forea Burkenroad.

- Sternum of pereopod IV in female rounded at posterior margin. Median lobules of distolateral lobe almost triangular .S. mulator Burkenroad.


## Genus Haliporus Bate, 1881

KEY TO SPECIES (FROM LINDNER AND ANDERSON, 19:7)

1. Spine present on inner margin of basal segment of antennular peduncle. Merus of pereopod I with a strong spine.
H. thetis Faxon, 1893.

- Spine absent on inner margin of basal segment of antennular peduncle. Merus of pereopod I without spine ...H. curvirostris Bate, 1881.

KEY TO SPECIES (FROM ANDERSON AND LINDNER, 1945, WITH ADDITIONS)

1. No postrostral teeth separated from rostral teeth by some distance .

> .2.

- One or two postrostral teeth separated from group of rostral teeth by some distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.

2. Neither branchiostegal nor pterygostomian spine present . . . . . . . 3 .

- Either branchiostegal spine, or pterygostomian, or both present ...
.4.

3. Epipods of maxillipeds II and III bifid (Figure 63) .................
. . . . . . . . . . . . . . . . . . . . . . . . . . H. tropicalis (Bouvier), 1905.

- Epipods of maxillipeds II and III not bifid
H. mulleri (Bate), 1888.

4. Branchiostegal and pterygostomian spines present ................
. ...........................illosus (Alcock and Anderson), 1894.

- Either of two spines absent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.

5. Branchiostegal spine present; pterygostomian spine absent ..... 6 .

- Branchiostegal spine absent; pterygostomian spine present. . . . . . .

6. Tooth or spine absent on orbital corner . . . . . . . . . . . . . . . . . . . . 7.

- Tooth or spine present on orbital corner ...H. robustus Smith, 1885.

7. Merus of pereopod I unarmed. Shrimps inhabit Atlantic coast of


Figure 63. Hymenopenaeus tropicalis (Bouvier) (from Williams, 1965).

$$
A \text {-lateral view; } B \text {-petasma. }
$$

Merus of pereopod I armed with spine. Shrimps inhabit Indo- Pacific region H. lucasii Bate, 1881.
8. One postrostral tooth separated from group of postrostral teeth by some distance ..... 9.America.H. modestus Smith, 1885.

- Two postrostral teeth separated from group of postrostral teeth by some distance ..... 11.

9. Shrimps inhabit Pacific Ocean ..... 10.

- Shrimps found off southern Africa H. triarthrus (Stebbing).

10. Merus of pereopod I with spine H. diomedeae (Faxon), 1893.

- Merus of pereopod I without spine H. sibogae (de Man), 1907.

11. Pterygostomian spine present ..... 12.

- Pterygostomian spine absent ..... 14.

12. Species inhabits Indian and Pacific oceans ..... 13.

- Species inhabits Atlantic Ocean .H. laevis (Bate), 1881.

13. Species inhabits Pacific coast of America; carina on abdominal somites IV and V without sharp teeth Two species: H. nereus (Faxon), 1893 and H. doris (Faxon), 1893. Species differences have not been described; however, in the illustra- tion $H$. doris is shown with a tooth on the postrostral carina behind the cervical suture.
46 - Species found in region of Maldive Islands; carina on abdominalsomites IV and V with sharp teeth . . . . .H. sewelli Ramadan, 1938.
14. Species inhabits Atlantic Ocean ..... 15.

- Species inhabits Indo-Pacific region ..... 17.

15. Photophores absent ..... 16.

- Photophores present ..... H. debilis Smith, 1882.

16. Species inhabits northern part of Atlantic Ocean
Species inhabits region south of GabonH. chacei Crosnier and Forest, 1969.
17. Grooves on branchiostegal regions of carapace do not form L-shaped pattern ..... 18.

- Grooves on branchiostegal regions of carapace form L-shaped pattern .H. fattachi Ramadan, 1938.

18. Abdominal somites I, II, and III without carina ..... 19.

- Abdominal somite III and possibly also I and II with carina.H. propinqus (de Man), 1907.

19. Pereopod I with basial spine ..... 20.

- Pereopod I without basial spine H. aequalis (Bate), 1888.

20. Middle of posterior margin of dorsal side of abdominal somites IV,V, and VI without spines21.

- Middle of posterior margin of dorsal side of abdominal somites IV,V, and VI with spines . . . . . . . . . . . . . . . . . . neptunus (Bate), 1881.

21. Postcervical carina present on dorsal side of carapace; distoventralspine present on merus of pereopod I.
H. obliquirostris (Bate), 1881.

- Postcervical carina and spine on merus of pereopod I absent.H. halli Bruce, 1966.
Subfamily BENTHESICYMINAE Bouvier, 1908
KEY TO GENERA (FROM TIRMIZI, I958)

1. Prosarthema absent. No immovable spines on telson; tip of telsonincised or terminates in a small spine 2.

- Prosarthema present. Telson with one pair of immovable distalspines in addition to three pairs of movable spines; tip of telson stoutand sharply pointed. No podobranchiae on appendages after maxil-liped II. Median carina present on all abdominal somites. Maxil-liped III and all pereopods divided into secondary segmentspereopod III. Telson armed with more than one pair of movablelateral spines3.
- Podobranchiae absent on appendages behind maxilliped II. Me-dian carina present only on abdominal somite VI. Telson with onlyone pair of movable spines; tip incised ......... .Gennadas Bate, 1881.

3. In addition to median carina on abdominal somite VI, similar carinae also present on other somites of abdomen. Tip of telsonusually pointed4.

- Median carina present only on abdominal somite VI. Tip of telson incised . . . . . . . . . . . . . . . . . . . . Bentheogennema Burkenroad, 1936.

4. Hepatic spine present or absent. Dactyls of pereopods IV and V typical, not divided into secondary segments
.Benthesicymus Bate, 1881 .
47 -- Hepatic spine present. Dactyls of pereopods IV and V flagellate and multisegmented ....................................nthonecthes Smith (only species: B. filipes Smith, 1884).

## Genus Bentheogennema Burkenroad, 1936

KEY TO SPECIES

1. Cervical and postcervical sutures not close to each other dorsally . 2

- Cervical and postcervical sutures very close to each other dorsally B. pasithea (de Man), 1911.

2. Cervical and postcervical sutures uninterrupted by postrostral carina . . . . . . . . . . . . . . . . . . . . . . . . . B. borealis (Rathbun), 1902.

- Cervical and postcervical sutures interrupted by postrostral carina B. intermedia (Bate), 1882.

Subfamily ARISTAEINAE AIcock, 1901

KEY TO SPECIES (FROM ANDERSON AND LINDNER, 1945)

1. Hepatic spine present ....................................................

- Hepatic spine absent . ................................................. 3 .

2. Podobranchia on pereopod III and epipod on pereopod IV rudimentary or absent . . . . . . . . . . . . . . . . . . . . . . . Hepomadus Bate.

- Podobranchia on pereopod III and epipod on pereopod IV well developed (Figure 64, B) ............ Aristaeomorpha Wood-Mason (one species: A. foliacea [Risso], 1826).

3. Epipod on pereopod IV present. Podobranchia present on pereopod III but rudimentary
4. 

- Epipod on pereopod IV and podobranchia on pereopod III absent ......................................... Aristeas Duvernoy.

4. Epipod on pereopod IV rudimentary. Podobranchia on pereopod III small ............................. . Hemipenaeus Wood-Mason.

- Epipod on pereopod IV and podobranchia on pereopod III well developed. Rostrum with three teeth ........... Plesiopenaeus Bate.


## Genus Hepomadus Bate, 1881

KEY TO SPECIES (FROM ANDERSON AND LINDNER, 1945)

1. Abdominal somites IV and V with teeth on posterior margin of


Figure 64. A-Plesiopenaeus edwardsianus Johnson (from Kronie, Bondy, and Lefeur, 1967); B—Aristaeomorpha foliacea (Risso) (from Perez Farfante, 1970).
dorsal carina
.H. gladialis Bate, 1881 .

- Abdominal somites IV and V without teeth on posterior margin of dorsal carina H. tener Smith, 1884.

KEY TO SPECIES FOUND IN ATLANTIC OCEAN (FROM ANDERSON AND LINDNER, 1945)

1. Large spine present on tergum of abdominal somite III ..........2.

- Large spine absent on tergum of abdominal somite III
.H. speciosus Bate, 1881.

2. Rostrum short; less than one-fifth length of carapace and not reaching tip of eyes .................... H. carpenteri Wood-Mason, 1891.

- Rostrum at least one-fifth length of carapace and reaching tip of eyes
.H. spinidorsalis Bate, 1881.
Three more species of this genus have been reported from the IndoPacific region: H. crassipes Wood-Mason, 1891; H. gracilis Bate, 1881; and H. sibogae de Man, 1910.

Genus Plesiopenaeus Bate, 1881
KEY TO SPECIES (FROM ANDERSON AND LINDNER, 1945)

1. Exopod of maxilliped II equal in length to endopod or shorter ....2.


Figure 65. Aristeus varidens Holthuis (from Holthuis, 1952).

$$
A \text {-male; } B \text {-female. }
$$

- Exopod of maxilliped II approximately twice longer than endopod (see Figure 64, A) ................ P. edwardsaanus (Johnson), 1867.

2. Exopod of maxilliped II not longer than endopod. Merus of pereopods I and II with a movable spine. Basis and ischium of pereopod I without fixed tooth ...P. coruscans (Wood-Mason), 1891.

- Exopod of maxilliped II much shorter than endopod. Ischium of pereopod I with strong tooth . . . . . . . . . . . P. armatus (Bate), 1881.


## Genus Aristeus Duvernoy, 1840

KEY TO SPECIES

1. Body smooth, without pubescence. Movable spine on distal end of
merus present on only pereopods I and II ....................2.

- Body pubescent. Movable spine on distal end of merus present on pereopods I, II, and III
A. virilis (Bate), 1881.

2. Pleurobranchiae on pereopods I to IV in form of papillae 1 to 2 mm in size, covered with small setae or spinules

- Pleurobranchiae on pereopods I to IV very small, visible only with the help of a magnifying lens, and without spinules or setae
A. alcocki Ramadan, 1938.

3. Inner lobe of petasma with a deep incision ...................... . 4 .

- Inner lobe of petasma without deep incision . . . . . . . . . . . . . . . . . 5 .

4. Chela of pereopods I and II longer than carpus (Figure 65).
A. varidens Holthuis, 1952 .

49 - Chela of pereopod I equal in length to carpus; chela of pereopod II shorter than carpus
A. semidentatus Bate, 1881
5. Usually, no spine present on posterior margin of abdominal somite 6.

- Small spine present on posterior margin of abdominal somite ..... A. antennatus (Risso), 1816.

6. Species not found in Atlantic Ocean ............................. 7 .

- Species found in Caribbean Sea . . . . . . A. antillensis Bouvier, 1909.

7. Species found in Indian Ocean
A. mabahisse Ramadan, 1938.

- Species found in region of Galapagos Islands
A. occidentalis Faxon, 1893.

Subfamily SICYONINAE Ortmann, 1890<br>One genus: Sicyonia H. Milne-Edwards, 1830

> KEY TO SPECIES FROM PACIFIC COAST OF AMERICA AND ATLANTIC OCEAN ${ }^{2}$ (FROM ANDERSON AND LINDNER, 1945, WITH ADDITIONS)

1. Species inhabits Pacific and Atlantic coasts of America. ......... 2 .

- Species found off coast of West Africa and $S$. carinata found in Mediterranean Sea .................................................. 18.

2. Species inhabits Atlantic coast of America ........................ 3.

- Species inhabits Pacific coast of America ........................ . 9.

3. Antennal angle unarmed. Dorsal carina of abdominal somite II with an incision in the form of a transverse groove at place of joint. Dorsal carina of abdominal somite V does not terminate posteriorly in a tooth or sharp angle. Basis and ischium of pereopod I armed with spines .4.

- Antennal angle armed with buttressed spine. Dorsal carina of abdominal somite II without transverse groove. Dorsal carina of abdominal somite V terminates posteriorly in a tooth or sharp angle. Basis and ischium of pereopod I unarmed 5.

4. Dorsal carina of carapace armed with three teeth posterior to orbital margin; middle tooth largest. Anterior tooth smaller than two posterior ones and subequal to rostral teeth, but appears to be one of rostral group. Two subapical teeth on rostrum. Terminal margin of rostrum with four teeth. One or two small movable spines present on ventrodistal end of rostrum. Species inhabits Pacific and Atlantic coasts of America (Figure 66) . . . . . . . . S. laevigata Stimpson, 1871.
50 - Dorsal carina of carapace armed with three subequal teeth posterior to orbital margin; anterior tooth much larger than rostral teeth. Three teeth on rostrum. Terminal margin of rostrum armed with

[^8]

Figure 66. Sicyonia laevigata Stimpson (from Williams, 1965).
$A$-cephalothorax (lateral view); $B$-thelycum; $C$-petasma.
three formed teeth and a fourth rudimentary one. No movable spines on ventrodistal end of rostrum (Figure 67)
.S. parri (Burkenroad), 1934.


Figure 67. Sicyonia parri (Burkenroad) (from Williams, 1965).
5. Postrostral carina with two to three teeth posterior to orbital margin . 6.

- Postrostral carina with three to four teeth posterior to orbital margin; two larger located far behind orbit. Species inhabits Atlantic and Pacific coasts of America (Figure 68)
S. brevirostris Stimpson, 1871.

6. Postrostral carina with one large tooth posterior to level of hepatic spine 7.

- Postrostral carina with two large teeth posterior to orbital margin S. edwardsii Miers, 1881.

7. Rostrum inclined upward at a considerable angle . 8.

- Rostrum horizontal or slightly decurved at tip (Figure 69)
.S. dorsalis Kingsley, 1878.

8. Anteroventral angles of first four pleura of abdomen terminate in


Figure 68. Sicyonia brevirostris Stimpson (from Williams, 1965).

$$
A \text {-rephalothorax (lateral view) ; } B \text { —petasma. }
$$



Figure 69. Sicyonia dorsalis Kingsley (from Williams, 1965).
sharp spines curved laterally and slightly upward. Posterior angles of dorsal carinae of last three somites of abdomen taper into distinct spines
.S. burkenroadi Cobb, 1971.

- Anteroventral angles of first four pleura of abdomen without curved spines. Small backwardly directed teeth present on posterior margin of only last two somites of abdomen (Figure 70)
S. stimpsoni Bouvier, 1905.

9. Antennal angle unarmed. Dorsal carina of abdominal somite II with an incision at place of joint in form of transverse groove. Dorsal carina of abdominal somite V does not terminate posteriorly in teeth or sharp angle. Basis and ischium of pereopod l armed with spines

- Antennal angle armed with spines. Dorsal carina of abdominal somite II without transverse groove. Dorsal carina of abdominal


Figure 70. Sicyonia stimpsoni Bouvier (from Williams, 1965).
somite V terminates posteriorly in a tooth or sharp angle. Basis and ischium of pereopod I unarmed11.
10. *Dorsal carina of carapace armed with three teeth posterior to orbital margin; middle tooth largest. Anterior tooth smaller than two posterior ones and subequal to rostral teeth, but appears to be one of rostral group. Two subapical teeth on rostrum. Terminal margin of rostrum with four teeth. One or two small movable spines present on ventrodistal end of rostrum. Species inhabits Pacific and Atlantic coasts of America (Figure 66)
.S. laevigata Stimpson, 1871.

- Dorsal carina of carapace with three teeth posterior to orbital margin, all approximately equal in size. Anterior tooth larger than teeth of rostral group. Three teeth (excluding terminal ones) on rostrum. Terminal margin of rostrum armed with four to five teeth. Ventral margin of rostrum with one movable spine
.S. disparri (Burkenroad), 1934.

11. **Postrostral carina with two to three teeth posterior to orbital margin

- Postrostral carina with three to four teeth posterior to orbital margin; three larger located far behind orbit. Species inhabits Pacific and Atlantic coasts of America (Figure 68)
.S. brevirostris Stimpson, 1871.

12. Two larger teeth of two to three on postrostral carina located posterior to orbit

- Of two teeth on postrostral carina, larger located posterior to level of hepatic spine 14.

13. Rostrum with two teeth posterior to bifid tip (excluding anterior tooth of carapace sometimes located anterior to orbital margin). Pair of median acicules on orbital somite divergent and with distinctly curved tips ...................S. disedwardsi (Burkenroad).

- Rostrum with one tooth posterior to bifid tip. Pair of median acicules

[^9]on orbital somite, if curved, very slightly so
S. penicillata Lockington, 1878.
14. Posterior tooth on carapace very large and very close to posterior margin, merging with it like a high carina 15.

- Posterior tooth on carapace larger than anterior one, but not very strong and located far ahead of posterior margin . . . . . . . . . . . . 16.

15. Pleura of abdominal somite I with small and short anteromedian groove. Abdominal surface smooth, although covered with dots and bristlés
.S. affinis (Faxon), 1893.

- Pleura of abdominal somite I with a deep anteromedian groove which extends to ventral margin and joins posteromedian groove. Abdominal surface tuberculate and fairly rugulose
S. alliaffinis (Burkenroad).

16. Dorsal carina posterior to last tooth on carapace low but distinct. Rostrum horizonal with three teeth with bifid and slightly decurved tip 17.

- Dorsal carina posterior to last tooth on carapace very high. Rostrum elevated at a considerable angle with four teeth above and two on terminal margin . . . . . . . . . . . . . . . . . . . . . . .S. picta (Faxon), 1893.

17. Telson longer than uropods and armed with pair of well-defined immovable lateral spines. Rostrum with lateral crests parallel to ventral margin throughout its length . . . . S. ingentis (Burkenroad).

- Telson shorter than uropods and armed with pair of very small, barely noticeable, immovable lateral spines. Rostrum with lateral crests raised upward from ventral margin toward distal end
S. disdorsalis (Burkenroad).

18. Sharp tooth present on pleura of abdominal somite V on lower side

- No teeth on pleura of first five abdominal somites
.S. carinata (Brünnich), 1768.

19. Anterior third of dorsal carina of abdominal somite I I with a depression. Pleura of abdominal somite IV with tooth on lower side. Pereopod II with basial spine . . . . . . . . .S. galeata Holthuis, 1952.

- Anterior third of dorsal carina of abdominal somite II without depression. Pleura of abdominal somite IV without tooth on lower side. Pereopod II without basial spine . . . . . . . S. foresti Rossignol.

KEY TO FAMILIES (HOLTHUIS, 1955, wITH ADDITIONS)

1. Pereopods I and II, or only II, chelate or subchelate. Maxilliped II I four- or five-segmented. Epipods, when present, small and extend vertically, not reaching branchial chamber

- Pereopods never chelate or subchelate. Maxilliped III seven-segmented. Epipods of first four pereopods very large, forming rightangle and extending dorsally into branchial chamber (Figure 71) . .Family Procarididae only genusand species: Procaris ascensionis (Chace and Manning, 1972).

2. Pereopod I chelate or simple (nonchelate) .....  3.

- Pereopod I subchelate ..... 21.

3. Fingers of all four chelae slender, with pectinate cutting edges Family Pasiphaeidae.

- Fingers of all four chelae with nonpectinate cutting edges ..... 4.

4. Carpus of pereopod II entire (undivided). Pereopod I always with well-developed chela ..... 5.

- Carpus of pereopod II usually divided into two or more subseg- ..... 15.ments. If not, pereopod I nonchelate

5. Last two segments of maxilliped II placed side by side at end of53 preceding segment. Fingers of chelae extremely long and slender.Family Stylodactylidae(only genus: Stylodactylus A. Milne-Edwards, 1881).- Last two segments of maxilliped II not placed side by side at end ofpreceding segment. Fingers of chelae not very long6.
6. Both fingers of chelae of pereopod I movable
Family Psalidopodidae(only genus: Psalidopus Wood-Mason and Alcock, 1892).- Only one finger on chelae of pereopod I movable7.
7. Pereopod I stouter and stronger, although frequently slightly shor-ter than pereopod II 8.- Pereopod I usually slender, rarely almost as thick as pereopodII10.
8. Pereopod I with a flat, semicircular movable finger deeply hidden inslit of propodus when chelae closed. Rostrum dorsoventrally flat . .Family Disciadidae(only genus: Discias Rathbun, 1902).

- Pereopod I with normal chelae. Rostrum laterally compressed .....  9.

9. Last segment of maxilliped II located along lateral side of penulti-

Figure 71. Procaris ascensionis Chace and Manning (Chace and Manning, 1972).

mate segment. Exopod of maxilliped I with a well-developed flagellum

Family Rhynchocinetidae.

- Last segment of maxilliped II located at end of penultimate segment. Exposed of mailliped I without flagellum

Family Bresiliidae.
10. Pereopods usually with exopods. If exopods absent, fingers of chelae with terminal tufts of long hairs 11.

- Pereopods without exopods. Fingers of chelae without terminal tuftsof long hairs13.

11. Mandibles without palpi. Fingers of chelae usually with well- developed terminal tufts of hairs. Last three pairs of pereopods slightly elongated. Pereopods with or without exopods. Mostly in- habit fresh waters

.Family Atyidae.

- Mandibles with palpi. Fingers of chelae without terminal tufts of hairs. Pereopods with exopods. Mostly inhabit deep seas ..... 12.

12. Last three pairs of pereopods not elongated, with carpus shorter .Family Oplophoridae.than propodus

- Last three pairs of pereopods considerably elongated, with carpusseveral times longer than propodus (Figure 72)Family Nematocarcinidae(only genus: Nematocarcinus A. Milne-Edwards, 1881).

13. Arthrobranchiae and epipods present on first four pairs ofpereopods. Upper antennular flagellum simple.Family Campylonotidae.

- Pereopods without arthrobranchiae or epipods. Upper antennular flagellum divided into two ..... 14.

14. Mandibles usually with incisorial process; if not, maxilliped III not flat and foliate .Family Palaemonidae.

- Mandibles without incisorial process; maxilliped III flat and foliate .Family Gnathophyllidae.

15. Chelae of first pair of pereopods moderately well developed, at least on one side ..... 16.

- Chelae of first pair of pereopods microscopically small orabsent19.

54


Figure 72. Nematocarcinus ensifer (Smith).
16. Both pereopod I chelate. Rostrum dentate or edentate, without subdistal teeth ..................................................... . 17.

- Usually first right pereopod chelate, while left simple with claw-like dactyl. If both first pereopods chelate, rostrum with distal notch covered with bristles and forming subdistal dorsal tooth

Family Processidae.
17. Tips of fingers of chelae of pereopod I usually brightly colored. First pair of chelipeds short and slightly stronger. Eyes free and never extremely elongated

Family Hippolytidae.

- Tips of fingers of chelae of pereopod I not brightly colored. Eyes extremely elongated or covered by carapace 18.

18. Eyes extremely elongated, reaching almost to end of antennular peduncle; cornea small. Pereopod I shorter and not stronger than pereopod II Family Ogyrididae (only genus: Ogyrides Stebbing, 1914).

- Eyes normal or partly or totally covered by carapace, and never elongated. Pereopod I significantly larger than pereopod II and often unequal in size
.Family Alpheidae.

19. Carpus of pereopod II not divided into subsegments. Chelae of pereopod II strong ................... Family Thalassocarididae (only genus: Thalassocaris Stimpson, 1860).

- Carpus of pereopod II divided into two or more subsegments. Chelae of pereopod II small 20.

20. Mandibles with very well developed incisorial and molar processes and palpus. Rostrum laterally compressed and armed with teeth

Family Pandalidae.

- Mandibles simple, without palpus. Rostrum broad and constitutes a continuation of carapace; several dorsal teeth on rostrum

Family Physetocarididae (only genus: Physetocaris Chace, 1940).
21. Carpus of pereopod II multisegmented

Family Glyphocrangonidae (only genus: Glyphocrangon A. Milne-Edwards, 1881).

- Carpus of pereopod II nonsegmented ..... Family Crangonidae.

FAMILY OPLOPHORIDAE KINGSLEY, 1878
KEY TO GENERA (FROM HOLTHUIS, I455)

1. Exopods, at least on maxilliped III and pereopod I, foliate and usually hard. Outer margin of scophocerite usually armed with a series of spines. Telson terminates in a point. Eyes large and well pigmented (Figure 73) . . . . . . Oplophorus H. Milne-Edwards, 1837.

- Exopods never foliate and hard on pereopods ..................... 2 .

2. At least last four abdominal somites with one dorsomedian carina each . 3.

- Abdominal somite VI without dorsal carina ...................... . 5 .

55 3. Straight lateral carina of carapace absent. Posterior margin of hepatic groove not intersected by a sharp oblique outgrowth or carina. Entire cutting edge of mandible dentate (Figure 74)
.Acanthephyra A. Milne-Edwards, 1881.


Figure 73. Oplophorus spinosus (Brullé) (from Holthuis, 1955).


Figure 74. Acanthephyra purpurea A. Milne-Edwards (from Holthuis, 1955).

- Carapace with at least one straight lateral carina extending from posterior margin to carapace. Posterior margin of hepatic groove sharply intersected at branchial part of carapace by an oblique carina. Anterior half of incisorial process of mandible unarmed ..4.

4. Single longitudinal carina present on lateral surface of carapace. Dorsal carina of carapace edentate on posterior three-fourths of its length. No dorsal keel on abdominal somite I (Figure 77)
.Meningodora Smith, 1882.

- More than one longitudinal carina on lateral surface of carapace. Dorsal carina of carapace dentate throughout almost its entire length. Each abdominal somite with a dorsal carina (Figure 76) ... .Notostomus A. Milne-Edwards, 1881.

5. Ischium and merus of pereopods broad and slightly compressed laterally (Figure 75) . .......................... Ephyrina Smith, 1885.

- Pereopods normal ................................................ 6.

6. Eyes very small and poorly pigmented. Anterior margin of abdominal somite I flat and not serrated. Telson with incised and spiny end

Figure 75. Ephyrina hoskyni Wood-Mason and Alcock (from Holthuis, 1955)

(Figure 78) .Hymenodora Sars, 1877.

- Eyes very large and well pigmented. Anterior margin of abdominal somite I with distinct projection or teeth, which cover posterior margin of carapace. Telson terminates in a sharply pointed tip and is armed with lateral spines (Figure 79) .... .Systellaspis Bate, 1888.

Figure 76. Notostomus robustus Smith (from Holthuis, 1955).


$$
\text { FAMILY ATYIDAE DANA, } 1852
$$

KEY TO GENERA (FROM HOLTHUIS, 1955, WITH ADDITIONS)

1. Arthrobranchiae present on first four pereopods. Chelae without tufts of long hairs on finger tips (Figure 80).
.Xiphocaris van Martens, 1872.
57 - Arthrobranchiae absent, at least on last four pereopods. Chelae with tufts of long hairs on finger tips . 2.
2. Supraorbital spines present .....  3.

- Supraorbital spines absent .....  8.

3. Carapace without pterygostomian spine .....  4.

- Carapace with pterygostomian spine .....  6.

4. All pereopods with exopods. Eyes well developed, cornea pigmented(Figure 81)


Figure 77. Meningodora mollis
Smith (from Holthuis, 1955).


Figure 78. Hymenodora gracilis Smith (from Holthuis, 1955).


Figure 79. Systellaspıs debilis (A. Milnc-Edwards) (from Holthuis, 1955).


Figure 80. Xiphocaris elongala (Guerin-Meneville).

Figure 81. Paratya compressa (de Haan).


- Fifth pair of pereopods without exopods; if exopods present, eyes reduced and without pigment . 5.

5. Eyes much reduced and without pigment. In adults exopods present on first four or on all pereopods. Maxilliped III with arthrobranchiae (Figure 82)

Troglocaris Dormitzer, 1853.

- Eyes well developed and pigmented. In adults exopods absent on pereopods. Maxilliped III without arthrobranchiae (Figure 83) ... Atyaephyra de Brito Capello, 1867.

Figure 82. Troglocaris anophtalmus
(Kollar) (from Holthuis, 1955).


Figure 83. Atyaephyra desmaresti
(Millet) (from Holthuis, 1955).

6. Carpus of first pereopod excavated but that of second normal. Pereopod V without exopod Syncaris Holmes, 1900.

- Carpus of both first and second pereopods excavated. Pereopod V usually with rudimentary exopod 7.

7. Eyes much reduced and without pigment (Figure 84, B)
.Palaemonias Hay, 1901.

- Eyes well developed and pigmented (Figure 84, C)

Dugastella Bouvier, 1912.
8. Exopods present on all pereopods. Eyes reduced and without pigment or with slightly pigmented cornea . ........................ 9 .

- Exopods absent, at least on last four pereopods. Eyes usually well developed and pigmented
58 9. Antennal spine present
Antennal spine absent (Figure 84, G) .....Typhlatya Creaser, 1936.

10. Shrimps found off Madagascar and Australia 11.

- Shrimps found off Fiji Island (Figure $84, D$ to $F$ ) ....Antecaridina Edmondson, 1954-(Mesocaris Edmondson, 1935).

11. Podobranchia present on maxilliped II. Epipod present on pereopod IV. Shrimps found off Australia
.Stygiocaris Holthuis, 1960.


Figure 84. A—Syncaris pasadenae (Kingsley); B-Palaemonias ganteri Hay; $C-$ Dugastella marocana Bouvier; D-Antecaridina lauensis (Edmondson) (lateral view); $E$-eye; $F$-rostrum (dorsal view); G-Typhlatya garciai Chace (from Holthuis,

- Podobranchia absent on maxilliped II. Epipod absent on pereopod
IV. Shrimps found off Madagascar . . . Typhlopatsa Holthuis, 1956.

12. Pereopod I with arthrobranchiae . . . . . . . . . . . . . . . . . . . . . . . . . . 13.

- Pereopod I without arthrobranchiae ............................. 16.

13. Carpus of pereopod II very short, width greater than length, and deeply excavated anteriorly (Figure 85) ........ Atya Leach, 1816.

- Carpus of pereopod II greater in length than width and not deeply


Figure 85. Atya crassa (Smith) (from Holthuis, 1955).

Figure 86. Caridinides wilkinsi Calman: $A$-anterior end; $B$-pereopod I; Caridina acuminata Stimpson: C-anterior end; Potimirim mexicana (De Saussure): $D$-cephalic end; $E$-first chela; Caridella cunnigtoni Calman: $F$-anterior end; $G$-first chela (from Holthuis, 1955).


## excavated anteriorly

14. 

59 14. Exopod present on pereopod I (Figure 86, $A$ and $B$ ) .Caridinides Calman, 1936.*

- Pereopod I without exopod 15.

15. Palmar portion of chela well developed. Fingers of chela slightly longer than propodus. Rostrum usually laterally compressed and dentate on both upper and lower margins; rarely one or both margins unarmed. Carpus of pereopod II, if anteriorly excavated, very small. Area of generic distribution: Africa and Indo-WestPacific region (Figure 86, C). . . . Caridina H. Milne-Edwards, 1837.

- Palmar portion of chela very small. Fingers almost equal in length to propodus. Rostrum short, dorsoventrally compressed basally, and without dorsal (although with ventral) teeth. Carpus of pereopod II usually with well-developed anterior excavation. Area of generic distribution: America (Figuree 86, $D$ and $E$ )
.Potimirim Holthuis, 1954.

16. Carpus of pereopod I excavated anteriorly ..................... 17.

- Carpus of pereopod I not excavated or slightly excavated anteriorly 19.

[^10]17. Palmar portion of chela indistinct. Chela divided up to or almost up to base so that fingers equal in length. Carpus of pereopod II with anterior excavation ................................................. . 18.

- Palmar portion of chela distinct. Fingers distinctly shorter than propodus. Carpus of pereopod II without anterior excavation (see Figure $86, F$ and $G$ )

Caridella Calman, 1906.
18. Anterolateral angle of basal segment of antennular peduncle with slender tooth. Several postorbital teeth occur on upper margin of rostrum. Shrimps found in Lake Tanganyika (Figure 87, $A$ and $B$ ) .Atyella Calman, 1906.

- Anterolateral angle of basal segment of antennular peduncle without tooth. Postorbital teeth absent on upper margin of rostrum. Shrimps found off Cuba (Figure 87, $C$ and $D$ )

Micratya Bouvier, 1913.

19. Epipods present on first four pereopods. All pereopods with pleurobranchiae. Maxilliped III with two arthrobranchiae; maxilliped II with podobranchiae. Rostrum quite long and upper margin devoid of teeth except for postorbitals (Figure 87, E)
.Caridinopsis Bouvier, 1913.

- Epipods absent on first four pereopods. Pleurobranchiae on pereopod V usually absent. Maxilliped III largest with one arthrobranchia. Podobranchiae absent on maxilliped II. Upper margin of rostrum without postorbital teeth .................. 20.

20. Epipods present on first three pereopods. Rudimentary arthrobranchiae present on maxilliped III (Figure 87, F)

Limnocaridella Bouvier, 1913.

- Epipods absent on pereopods. Branchiae absent on maxilliped III (Figure 87, G).
.Limnocardina Calman, 1899.


## FAMILY PASIPHAEIDAE DANA, 1852

## KEY TO GENERA (FROM HOLTHUIS, 1955)

1. Mandibles without palpus. Rostrum represented by a raised post
frontal spine (Figure 88, $A$ )

.Pasiphaea Savigny, 1816.

- Mandibles with palpus. Rostrum represented by forward projection

2. Pereopod IV distinctly shorter than pereopods III and V... .......3.

- Pereopod IV longer than pereopod V, but both shorter than pereopod III .7.

3. Antennal and branchiostegal spines absent. Dorsal margin of carapace usually without spines ..... 4.

- Antennal and branchiostegal spines present. Dorsal margin of carapace with spines .....  5.

4. Mandibular palpus two-segmented (Figure 88, B)

Figure 88. A-Pasiphaea mullidentata Esmark; B-Parapasiphae sulcatifrons (from Holthuis, 1955).


- Mandibular palpus unsegmented (Figure 89, $A$ and $B$ )

Dantecia Caullery, 1896.
5. Mandibular palpus unsegmented (Figure 89, C)


Figure 89. Dantecia caudani Caullevy: $A$-anterior part of carapace; $B$-mandible; $C$-Sympasiphaea annectens Alcock; $D$ Eupasiphae latirostris (WoodMason and Alcock) (from Hobthais, 1955).

- Mandibular palpus two-segmented . 6.

6. Maxilliped III with one arthrobranchia . . . . . . Glyphus Filhol, 1884.

- Maxilliped III with two arthrobranchiae (Figure 89, D). .Eupasiphae Wood-Mason and Alcock, 1893.

7. Pereopods III and IV almost equal in length, slender, and not shorter than pereopod I. Pleopods with very long and narrow exopods. Endopods distinctly shorter. Rostrum with dorsal teeth (Figure 90, A) ...... . Psathyrocaris Wood-Mason and Alcock, 1893.

- Pereopod IV shorter than pereopod III, and both shorter than pereopod I. Pleopods with short and equally long endopods and exopods. Rostrum without dorsal teeth (see Figure 90, B)
.Leptochela Simpson, 1860.

$$
\text { FAMILY RHYNCHOCINETIDAE ORTMANN, } 1890
$$

> KEY TO GENERA (FROM YALDWYN, 1960)

1. Rostrum immovable .....  2.

- Rostrum movable (Figure 91)

Rhynchocinetus H. Milne-Edwards, 1837.
2. Finger tips of pereopods I and II brightly pigmented (Figure 92) . . .Eugonatonotus Schmitt, 1926.

- Finger tips of pereopods I and II not brightly pigmented
.Lipkius Yaldwyn, 1960.

$$
\text { FAMILY BRESILIIDAE CALMAN, } 1896
$$

KEY TO GENERA (FROM HOLTHUIS, 19.5.5)

1. Exopods present only on first two pairs of pereopods. Pereopod V with a rudimentary pleurobranchia (Figure 93, A)

Figure 90. $A$-Psathyrocaris infirma Alcock and Anderson; BLeptochela bermudensis Gurney (from Holthuis, 1955).


Figure 91. Rhynchocinetus typus H. Milne-Edwards (from Holthuis, 1955).

Figure 92. Eugonatonotus crassus (A. Milne-Edwards) (from Holthuis, 1955).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bresilia Calman, 1896.

- Exopods present on all pereopods. Pereopod V with a welldeveloped pleurobranchia (Figure 93, B) ..... Lucaya Chace, 1939.

1. Pereopods II similar. Basal part of rostrum with no more than five


Figure 93. A-Bresilin atlantica Calman; B-Lucaya bigelowi Chace.
tecth; first tooth situated behind midpoint of carapace (Figure 94, A) .Campylonotus Bate, 1888.

- Pereopods II very dissimilar. Basal part of rostrum with more than 10 dorsal teeth, all of which are situated in anterior half of carapace (Figure 94, B) ...................... . . Bathypalaemonella Balss, 1914.


## FAMILY PALAEMONIDAE SAMOUELLE,1819

KEY TO SUBFAMILIES (FROM HOLTHUIS, 19.55)

1. Upper antennular flagellum with two branches which are free throughout their length. Pleopod II in male without appendix masculina, and in female without appendix interna. Pleurobranchiae absent at base of maxilliped III

Subfamily Euryrhynchinae (only genus: Euryrhynchus Miers, 1877).

- Upper antennular flagellum with two branches which are basally fuscd. Pleopod II in male usually with appendix masculina and in female with appendix interna . 2.

2. Lateral surface of carapace with longitudinal suture throughout its length, extending posteriorly from antennal region. Pleurobranchiae absent on maxilliped III....... .Subfamily Typhlocaridinae (only genus: Typhlocaris Calman, 1909).

## - Lateral surface of carapace without suture . 3.

63 3. Pleurobranchiae absent on maxilliped III. Posterior margin of telson with three pairs of spines (except in Anchistioides which have fcwer)
.Subfamily Pontoniinae.

- Pleurobranchiae present at base of maxilliped III. Posterior margin of telson with two pairs of spines and two or more setae
.Subfamily Palaemoninae.

62 Figure 94. A-Campylonotus rathbunue Schmitt; $B$-Bathypalaemonella zummeri Balss (from Holthuis, 1955).


Figure 95. A-Desmocaris trsphinosa (Aurivillius); B-Leander urocaridella Holthuis (from Hol(hais, 19.55).

Subfamily PALAEMONINAE Dana, 1852
KEY TO GENERA (FRO.I HOLTHUIS. 1955)

1. Supraorbital spine present .............. Desmocaris Sollaud, 1911.

- Supraorbital spine absent


Figure 96. A-Creaseria morleyn (Creaser): cephalothorax; BLeandrites celebensis (de Man): anterior part of cephalothorax (from Holthuis, 1955).

Figure 97. Palaemon (Palaemon) longirostris H. Milne-Edwards (from Howhuis, 1955).
2. Branchiostegal spine present .....  3.

- Branchiostegal spine absent ..... 7.

3. Mandibles without palpus .....  4.

- Mandibles with palpus .....  5.4. Pleopod I in male with distinct appendix interna on endopod.Branchiostegal groove absent. Propodus of pereopod $V$ withouttransverse rows of setae on distal part of posterior margin (seeFigure $96, B$. . . . . . . . . . . . . . . . . . . . . . Leandrites Holthuis, 1950.
- Pleopod I of male without appendix interna on endopod. Branchiostegal groove discernible as a sharp line. Propodus of pereopod V with transverse rows of setae on distal part of posterior margin .Palaemonetes Heller, 1969.
A. Eyes usually pigmented. Pereopod II stouter than pereopod I. Outer margin of exopod of uropod terminates in a tooth and a movable spine. .......... . .Subgenus Palaemonetes Heller, 1869.
- Eyes not pigmented. Pereopod II almost similar to pereopod I. Outer margin of exopod of uropod terminates in a tooth but not a movable spine
.Subgenus Allocaris Sollaud, 1911.
64 5. Eyes not pigmented, cornea reduced. Anterior margin of basal segment of antennular peduncle concave, gradually converging into a strong anterolateral spine. Branchiostegal groove on carapace absent. Propodus of pereopod $V$ with transverse rows of hairs in distal part of posterior margin. Mandibular palpus two-segmented (Figure 96, A)
.Creaseria Holthuis, 1950.
- Eyes distinctly pigmented, cornea well developed. Anterior margin of basal segment of antennular peduncle rounded; anterolateral spine small

6. Pleopod I of male with well-developed appendix interna on endopod. Branchiostegal groove absent. Propodus of pereopod V

Figure 98. A—Palaemon (Nematopalaemon) tenuipes (Henderson); B-Palaemon (Exopalaemon) styliferus H. Milne-Edwards (from

Holthuis, 1955).

without transverse rows of setae on distal part of posterior margin. Two median setae on posterior margin of telson very strong. Mendibular palpus two-segmented (Figure 95, B)

Leander Desmarest, 1849.

- Pleopod I of male without or with rudimentary appendix interna on endopod. Branchiostegal groove usually present as a sharp line. Propodus of pereopod $V$ with transverse rows of setae on distal part of posterior margin. Two median setae on posterior margin of telson slender (Figure 97)
.Palaemon Weber, 1795.
A. Rostrum with a raised basal crest with teeth. Pleura of abdominal somite $V$ with broad rounded tip. Mandibular palpus threesegmented B.
- Rostrum without a raised basal crest. Pleura of abdominal somite V usually with small pointed tip. Branchiostegal groove present .C.
B. Dactyl of last three pereopods highly elongated, longer than carpus and propodus together. Branchiostegal groove absent on carapace. Stylocerite with large tooth on dorsal surface (Figure 98, A) . . . . . . . . . . . Subgenus Nematopalaemon Holthuis, 1950.
- Dactyl of last three pereopods shorter than propodus. Branchiostegal groove present on carapace. Stylocerite without large dorsal tooth (Figure 98, B)
.Subgenus Exopalaemon Holthuis, 1950.
C. Mandibular palpus two-segmented (Figure 99, A)
.Subgenus Palieander Holthuis, 1950.
- Mandibular palpus three-segmented (Figure 97)
.Subgenus Palaemon Weber, 1795.

7. Hepatic spine absent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 .

- Hepatic spine present ............................................... 10 .



Figure 99. A-Palaemon (Palaeander) foridanus Chace; $B$-Palaemonetes (Palaemonetes) kadiakensis Rathbun (from Holthuis, 1955).

8. Mandibles without palpus. Eyes not pigmented (Figure 101, A)
Troglocubanus Holthuis, 1949.

- Mandibles with palpus. Eyes pigmented . 9.

9. Percopod II slender and smooth. Carpus 1.5 times or more longer than chela. Rostrum extends beyond scaphocerite (Figure 101, B). .Leptocarpus Holthuis, 1950.

- Pereopod II robust and spinescent. Carpus less than half chela in length. Rostrum very short and high; does not extend beyond scaphocerite (Figure 102) ...................Cryphiops Dana, 1852.

10. Mandibles without palpus. Dactyl of last three pereopods simple (Figure 103)

Pseudopalaemon Sollaud, 1911.

- Mandibles with palpus 11.

- Dactyl of last three pereopods biunguiculate (Figure 104, A)

Brachycarpus Bate, 1888.

Figure 100. Palaemonetes (Allocaris) antrorum Benedict: anterior part of carapace (from Holthuis, 1955).


Figure 101. A-Troglocubanus gibarensis (Chace); B-Leptocarpus fluminicola (Kemp) (from Holthuis, 1955).

## Subfamily PONTONIINAE Kingsley, 1878

KEY TO GENERA (FROM HOLTHUIS, 1955, WITH ADDITIONS)

1. Mandibular palpus present .....  2.

- Mandibular palpus absent .....  3.

2. Hepatic spine present (Figure 105) ..... Palaemonella Dana, 1852.

- Hepatic spine absent ..... 2a.
2a. Mandibular palpus two-segmented Eupontonia Bruce, 1971.
- Mandibular palpus one-segmented (Figure 105, B)Vir Holthuis, 1952.

3. Scaphocerites well developed ..... 4.

- Scaphocerites rudimentary ..... 37.

4. Exopods present on all maxillipeds .....  5.


Figure 102. Cryphiops caementarius (Molina) (from Holthuis, 1955).

Figure 103. Pseudopalaemon bouvieri Sollaud: anterior part of carapace (from Holthuis, 1955).


Figure 104. A-Brachycarpus biunguiculatus (Lucas); BMacrobrachium lar (Fabricius) (from Holthuis, 1955).

- Exopods absent, at least on maxilliped III ..... 27.

5. Dactyl of last three pereopods without basal projections. Sometimesdactyl broad at base, but broad part not seen when dactyl bentbackward 6.

- Dactyl of last three pereopods with distinct basal projections, which are visible even when dactyl bent backward ..... 22.

6. Pleura of first five abdominal segments broadly rounded or obtuse, but never with sharp points ..... 7.
67 - Pleura of at least abdominal segments IV and V with sharplypointed ends20.

Figure 105. A-Palaemonella vestigialis Kemp; $B$ —Vir orientalis (Dana): anterior end (from Holthuis, 1955).

7. Hepatic spine present ..... 8.

- Hepatic spine absent ..... 11.

8. Rostrum large, dorsally flat, with longitudinal median carina onventral side, and looks like a " T " in cross section. Carapace withbroad and distinct postorbital groove 9.

- Rostrum laterally compressed, never dorsally flat, and does not looklike a " T " in cross section. Postorbital groove, if present, narrowand indistinct10.

9. Three posterior pereopods consist of six segments only, since divi- sion of ischium and merus indistinct . . . . Tuleariocaris Chace, 1969.

- Three posterior pereopods distinctly divided into seven segments(Figure 106, A).Stegopontonia Nobili, 1906.

10. Hepatic spine immovable. Body in most cases slender. Rostrumwith distinct teeth..Periclimenes Costa, 1844.a. Dactyl of last three pereopods bíunguiculate (Figure 107, A)


Figure 106. A-Stegopontonia commensalis Nobili: anterior part of carapace; $B$-Paranchistus biunguiculatus (Borradaile): anterior part of carapace; $C$-Thaumastocaris streptopus Kemp: anterior part of carapace (from Holthuis, 1955).
. Subgenus Periclimenes Costa, 1844.

- Dactyl of last three pereopods simple (Figure 107, B) ...
.Subgenus Harpilius Dana, 1852.
- Hepatic spine immovable.* Body clumsy or heavy. Rostrum with small teeth arranged closer to its tip (Figure 106, B)
.Paranchistus Holthuis, 1952.
68 11. Rostrum laterally compressed, usually dentate ................... 12.
- Rostrum depressed ${ }^{3}$ or cylindrical, usually edentate ............ 19.

12. Carpus of pereopod I subsegmented. Pereopod I unequal (Figure 106, C)

Thaumastocaris Kemp, 1922.

- Carpus of pereopod I nonsegmented. Pereopod I equal ......... 13.

13. Pereopod II very dissimilar in size and shape. Larger pereopod II very high, with short broad fingers with one to three teeth; one tooth hammer-shaped and lodged in cavity of opposite finger. Outer margin of basal antennular segment frequently anterior to stylocerite (Figure 108). ............... . . Periclimenaeus Borradaile, 1915.

- Pereopod II differ in shape,** sometimes more or less dissimilar in
${ }^{3}$ Here and elsewhere "depressed" conveys a dorsoventral direction and "compressed" a lateral.
*Error in original. Should read "hepatic spine movable"-Technical Editor.
**Error in original. Should read "Pereopod II similar in shape"-Technical Editor.

Figure 107. A-Periclimenes (Periclimenes) impar Kemp; $B$-Periclimenes (Harpilius) brevicarpus (Schenkel) (from Holthuis, 1955).


Figure 108. Periclimenaeus tridentatus (Miers) (from Holthuis, 1955).
size. Fingers of these pereopods elongated, with small teeth, but sometimes without hammershaped one. Outer margin of basal antennular segment without lateral triangular projection ......... 14.
14. Rostrum very short, does not extend beyond eye stalk, and with or without very small teeth. Chelae of pereopod II high and somewhat compressed; fingers with one and two teeth (Figure 109)
.Onycocaris Nobili, 1904.

- Rostrum extends beyond eye stalk and very often dentate. Chelae of pereopod II cylindrical and slightly broad; fingers with large number (more than three) of denticles 15.

15. Scaphocerite broad and oval; terminal tooth does not extend beyond
lamella ..... 16.
-- Scaphocerite narrow and sharply pointed; terminal tooth extends beyond lamella ..... 17.

69 16. Telson with two large ventrally curved terminal spines. Hamopontonia Bruce, 1970.

- Telson without these processes (Figure 110)
.Anchistus Borradaile, 1898.


Figure 109. Onycocaris quadratophtalma (Balss): anterior part of body (dorsal view) (from Holthuis, 1955).


Figure 110. Anchistus custos (Forskäl) (from Holthuis, 1955).
17. Antennal spine present (Figure 111, A) . . Philarius Holthuis, 1952.

- Antennal spine absent 18.

18. Body moderately compressed. Dorsal spine on telson absent. Lateral margin of exupod of uropod with numerous teeth

Anapontonia Bruce.

- Body very highly compressed. Dorsal spine present on telson and located on its distal third. Lateral margin of exopod of uropod armed with one large falcate spine.

Ischnopontonia Bruce.
19. Telson rather broad; large dorsal spines usually present. Lateral margin of endopod* of uropod armed with one tooth
70 - Telson quite long; very small dorsal spines present. Outer margin of endopod* of uropod terminates in two spines; inner spine movable (Figure 112, $A$ and $B$ ).
.Pontoniopsis Borradaile, 1915.
20. Maxilliped III without arthrobranchiae. Body not highly depressed. Dactyl on last three pereopods straight and usually with one or more accessory teeth behind tip (Figure 111, $B$ and $C$ )

[^11]- Maxilliped III with arthrobranchiae. Body very highly depressed. Dactyl on last three pereopods simple and highly curved (Figure 112, $C$ and $D$ ) .......................... . Platycaris Holthuis, 1952.

69 Figure 111. A-Philarius imperialis (Kubo); Pontonia pinnophylax (Otto): $B$-male; $C$-female (from Holthuis, 1955).


Figure 112. Pontoniopsis comanthi Borradaile, anterior end: $A$-dorsal view; $B$-lateral view; Platycaris latirostris Holthuis, anterior end: $C$-dorsal view; $D$-lateral view (from Holthuis, 1955).
21. Body clumsy and not depressed. Carapace and abdomen sculptured. Lower margin of rostrum entire. Pleura of third abdominal segment sharply pointed (Figure 113).
.Dasycaris Kemp, 1922.

- Body highly depressed. Carapace and abdomen smooth. Lower margin of rostrum dentate. Pleura of third abdominal segment broadly rounded (Figure 114, A) . . . . Harpiliopsis Borradaile, 1917.

22. Carapace with three to four spines behind antennal spine. Pereopod II with short, noncompressed fingers (Figure 114, B)

Fennera Holthuis, 1951.

- Carapace without spines, except antennal and hepatic ones. Pereopod II with laterally compressed fingers . ................ . 23.

23. Body highly depressed. Basal projections of last three pereopods ungulate. Rostrum usually dentate .24.

- Body clumsy and not highly depressed. Basal projections of last


Figure 113. Dasycaris ceratops Holthuis (from Holthuis, 1955).


Figure 114. A—Harpiliopsis depressus (Stimpson): anterior part of cephalothorax; $B-F e n$ nera chacei Holthuis: anterior part of cephalothorax (from Holthuis, 1955).
three pereopods flat. Rostrum usually edentate . . . . . . . . . . . . . 25.
24. Hepatic spine absent. Pereopod II similar in shape although sometimes unequal in size (Figure 115, A)

Coralliocaris Stimpson, 1860.

- Hepatic spine present. Pereopod II very different in shape and size (Figure 115, B) . . . . . . . . . . . . . . . . . . . . . . . Jocaste Holthuis, 1952.

25. Rostrum depressed and edentate. Antennal spine absent (Figure 116)
.Conchodytes Peters, 1852.

- Rostrum compressed. Antennal spine present ..... 26

26. Rostrum edentate. Basal projections of dactyl of last threepereopods rounded and smooth. Maxilliped III with arthrobranch-iae (Figure 115, C and D) ................... Dasella Labour, 1945.

- Rostrum dentate. Basal projections of dactyl of last three pereopods sharply pointed with small ventral squamae. Maxilliped III without arthrobranchiae (Figure 117, A) ..... Cavicheles Holthuis, 1952.

27. Pleura of first five abdominal segments broadly rounded or obtuse ............................................................... . 28.

- Pleura of at least abdominal segments IV and V distinctly

28. Hepatic spine present . .............................................. . . 29.

- Hepatic spine absent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.

29. Antennal spine present ............................................. . . 30 .

Figure 115. A-Coralliocaris superba (Dana); B-Jocaste lucina (Nobili); Dasella herdmaniae (Lebour): C-lateral view; $D$-chela of pereopod 11 (from Holthuis, 1955).


Figure 116. Conchodytes monodactvlus Holthuis (from Holthuis, 1955).

- Antennal spine absent (Figure 117, B).....Waldola Holthuis, 1951.

30. Exopod on maxilliped II absent (Figure 118)
.Hamodactylus Holthuis, 1952.

- Exopod on maxilliped II present .Propontonia Bruce, 1969.

31. Maxilliped II with well-developed exopod. Dactyl of last three pereopods biunguiculate. Rostrum compressed and dentate. Postorbital tubercle present (Figure 119). . . .Anchistioides Paulson, 1875.

- Maxilliped II without exopod. Dactyl of last three pereopods simple. Rostrum depressed, at least in basal part. Postorbital tubercle absent 32.

32. Rostrum depressed throughout length and without dorsal teeth 33.

- Rostrum distally compressed; dorsal teeth usually present (Figure 120, A)
.Neopontonides Holthuis, 1951.

33. Rostrum dorsally terminates in a point or is tridentate. Posterior orbital margin without incision; margin formed by anterior margin of carapace (Figure 119, B) ........... Pontonides Borradaile, 1917.
72 - Rostrum frontally obtuse with anterior margin straight or toothed. Posterior orbital margin formed by carina located at some distance behind anterior margin of carapace; margin with distinct incision (Figure 120, $B$ and $C$ )

Veleronia Holthuis, 1951.
34. Rostrum with dorsal teeth. Postorbital and antennal spines present; two additional spines present on middle and posterior regions of lateral surfaces of carapace (Figure 121, A)....Balssia Kemp, 1922.


A


Figure 117. A-Cavicheles kempi Holthuis: anterior part of cephalothorax; B—Waldola schmitti Holthuis: anterior part of cephalothorax (from Holthuis, 1955).

Figure 118. Hamodactylus boschmai Holthuis (from Holthuis, 1955).

Figure 119. A-Anchistiodes willeyi (Borradaile); $B$-Pontonides unciger Calman (from Holthuis, 1955).


Figure 120. A-Neopontonides beaufortensis (Borradaile): cephalothorax (dorsal view); Veleronia serratifrons Holthuis: B-anterior part of cephalothorax (dorsal view); $C$-cephalothorax (lateral view); $D$-Pseudocoutiérea elegans Holthuis: cephalothorax (lateral view) (from Holthuis, 1955).

- Rostrum edentate ..... 35.
73 35. Branchiostegal sinus and groove present ..... 36.
- Branchiostegal sinus and groove absent ..... Lipkebe Chace, 1969.

36. Pterygostomian and postorbital spines present. Dactyl of first* threepereopods with basal outgrowths (Figure 121, B)
Coutiérea Nobili, 1901.

- Pterygostomian and postorbital spines absent. Dactyl of last three

[^12]pereopods without basal outgrowths (Figure 120, D)
.Pseudocoutierea Holthuis.
37. Exopod present on all maxillipeds. Rostrum present. Dactyl of last three pereopods biunguiculate (Figure 121, C)

Typton Costa, 1844.

- Maxillipeds $I 1$ and 111 without exopods. Rostrum absent. Dactyl of last three pereopods simple (Figure 122) . .. .Paratypton Balss, 1914.


Figure 121. A-Balssia gasti (Balss); B-Coutiérea agassizi (Coutiére); C-Typton tortugae McClendon (from Holthuis, 1955).

FAMILY GNATHOPHYLLIDAE ORTMANN, 1890
KEY TO GENERA (FROM HOLTHUIS, 1955)

1. Width of last two segments of maxilliped III less than half width of third from last, which is approximately equal in width to preceding one. Dactyl of pereopod II edentate on upper side; carpus and merus without spine on anterior margin . 2.

- Last two segments of maxilliped III almost equal in width or broader than third from last, which is distinctly broader than preceding onc. Dactyl of pereopod II dentate on upper side; carpus and merus with strong spines on anterior margin ...................... 3.

2. Exopod of maxilliped III shorter than endopod. Dactyl of last three. percopods biunguiculate and without tubercles on posterior

Figure 122. Paratypton siebenrocki Balss (from Holthuis, 1955).

margin. Outer antennular flagellum bifid (Figure 123) .Gnathophyllum Latreille, 1819.

- Exopod of maxilliped III longer than endopod. Dactyl of last three pereopods simple and with blunt tubercles along posterior margin. Outer antennular flagellum simple (Figure 124)

Gnathophylloides Schmitt, 1933.
3. Outer antennular flagellum normal and flagellar. Chelae of pereopod II broad and flat but not discoid. Last two segments of maxilliped III, although broad, not broader than third from last (Figure 125)

Phyllognathia Borradaile, 1915.

- Outer antennular flagellum broad, flat, and foliate. Propodus of two chelate legs broad; inner part in the form of a thin foliate appendage. Last two segments of maxilliped III significantly broader than third from last segment (Figure 126) Hymenocera Latreille, 181'9.

FAMILY ALPHEIDAE BATE, 1888
KEY TO GENERA (FROM HOLTHUIS, 1955)

1. Pleura of thorax and abdomen horizontally positioned and very broad. Pleura of first abdominal somite cover a large part of carapace (Figure 127)

Pterocaris Heller, 1862.

- Pleura of thorax and abdomen normal, not horizontal in position, and not unusually broad. Pleura of first abdominal somites cover at most a small section of posterolateral corners of carapace .... 2 .

2. Epipods present on at least first two pairs of pereopods. ......... 3 .

- Epipods on pereopods absent 17.

3. Abdominal somite VI with movable plate joined to posterolateral corner . 4.


Figure 123. Gnathophyllum panamense Faxon (from Holthuis, 1955).


Figure 124. Gnathophylloides mineri Schmitt: frontal part of carapace: $A$-dorsal view; $B$-lateral view (from Holthuis, 1955).


- Abdominal somite VI without movable posterolateral corner ..... 11.
75 4. Rostrum prominent .....  5.
- Rostrum absent or very poorly developed ..... 10.

5. Rostrum slender and sharply pointed in lateral view ..... 6.

- Rostrum with a broad vertical lamella on ventral surface; tip ofrostrum broadly rounded . ....................................... . 9 .6. Arthrobranchiae present on maxilliped III or pereopod I 7.
- Arthrobranchiae either absent on maxilliped III or on pereo-pod I 8.

7. Posterior margin of telson straight or slightly rounded (Figure 128,$A$ and $B$ ) . ............................... Alpheopsis Coutiére, 1897.76 - Posterior margin of telson terminates in a sharply pointed triangu-lar median tooth (Figure 128, $C$ and $D$ )

Figure 126. Hymenocera elegans Heller (from Holthuis, 1955).


Figure 127. Pterocaris typica Heller. $A$-dorsal view; $B$-ventral view (from Holthuis, 1955).
8. Epipods present on first three pairs of pereopods. Carpus of pereopod II five-subsegmented (Figure 129)

- Epipods present on just first two pairs of pereopods. Carpus of pereopod II four-subsegmented (Figure 130, $A$ and $B$ )

Arete Stimpson, 1860.
9. Dactyl of last three pairs of pereopods simple. Eyes almost not visible in dorsal view (Figure 130, $C$ and $D$ )

Athanopsis Coutiére, 1897.


Figure 128. Alpheopsts equalis truncatus Coutiére: anterior part of cephalothorax: $A$-dorsal view; $B$-lateral view; Neoalpheopsis hiatti Banner: anterior part of cephalothorax; $C$-dorsal view; $D$-lateral view (from Holthuis, 1955).


Figure 129. Athanas nitescens (Leach) (from Holthuis, 1955).


Figure 130. Arete dorsalis Stimpson: anterior part of body. $A$-dorsal view; $B$-lateral view; Athanopsis platyrhynchus Coutiére: $C$-dorsal view; D-lateral view; Aretopsis amabilis de Man: E-anterior end (dorsal view); $F$-rostrum (lateral view); Betaeus truncatus Dana: anterior end; $G$-dorsal view; H-lateral view; Parabetaens callierete C.outiére: I-rostrum, dorsal view: Automate anacanthopus de Man: J-anterior end, dorsal view; Salmoneus jarli (Holthuis): anterior end: $K$-dorsal view; $L$-lateral view (from Holthuis, 1955).

- Dactyl of last three pairs of pereopods biunguiculate. Eyes free and not covered (Figure 130, $E$ and $F$ ) ....Aretopsis de Man, 1910.

10. Telson broad and distally rounded (Figure 130, $G$ and $H$ )
.Betaeus Dana, 1852.

- Telson slender and terminates distally in a sharp triangular point (Figure 130, I) ......................... Parabetaeus Coutiére, 1897.

11. Movable finger of large chela without a large "chewing" tooth. Eyes always visible in frontal view

- Movable finger of large chela with a large "chewing" tooth lodged in socket on fixed finger. Eyes often totally hidden by carapace, even in frontal view

12. Eyes not covered in dorsal view. Rostrum, if present, does not extend to end of eye stalks (Figure 130, J)

Automate de Man, 1888.

Figure 131. A-Metabetaeus minutus (Whitelegge); Amphibetaeus jousseaumei Coutiére: rostrum; $B$-dorsal view; $C$-lateral view; D-Racilius compressus Paulson (from Holthuis, 1955).


77 - Eyes fully or partly covered dorsally by carapace. Rostrum present and extends beyond eyes
.Salmoneus Holthuis, 1955.

- Arthrobranchiae absent on maxilliped III (Figure 131, A)

Metabetaeus Borradaile, 1899.
14. Eyes dorsally covered by carapace but visible in frontal view. Pereopod I folded under body (Figure 131, $B$ and $C$ )
.Amphibetaeus Coutiére, 1897.

- Eyes more or less fully covered by carapace in frontal view and dorsally to some extent. Pereopod I not folded under body .... 15.

15. Body highly compressed laterally. Abdomen with dorsal carina. Carapace with median dorsal carina throughout its length (Figure 131, D) .Racilius Paulson, 1875.

- Body not compressed laterally. Abdomen without carina. Carina
on carapace, if present, does not extend throughout its length

16. Cardiac notch present on posterior margin of carapace. Exopods of uropods with transverse suture (Figure 132)

Alpheus Fabricius, 1798.

- Cardiac notch absent. Exopods of uropods without transverse suture (Figure 133, A) Thunor Armstrong, 1949.

17. Movable finger of large chela without "chewing" tooth. Dactyl of last three pereopods simple. Chelae of pereopods II very long, with unusually short fingers (Figure 133, B)

Batella Holthuis, 1955.

- Movable finger of large chela with "chewing" tooth lodged in socket of immovable finger. Dactyl of last three pereopods bi- or triunguiculate. Chela of pereopod II normal

18. 
19. Ischium and merus of maxilliped III considerably broadened; form an operculum over remaining oral appendages (Figure 133, $C$ and $D$ )
. Pomagnathus Chace, 1937.

- Maxilliped III normal (Figure 134) .........Synalpheus Bate, 1888.


Figure 132. Alpheus glaber (Olivi)
(from Holthuis, 1955).


Figure 133. A—Thunor rathbunae (Schmitt): carapace (lateral view); B-Batella parvimanus (Bate); Pomagnathus corralinus Chace: $C$-anterior part of cephalothorax (dorsal view); $D$-maxillipeds III (from Holthuis, 1955).

Figure 134. Synalpheus brevicarpus (Herrick) (from Holthuis, 1955).


FAMILY HIPPOLYTIDAE BATE, 1888

KEY TO GENERA (FROM HOLTHUIS, 1955)

## 1. Arthrobranchiae present on bases of first four pairs of pereopods

- Arthrobranchiae absent on bases of pereopods .....  5.

2. Posterolateral angle of abdominal somite VI with an articulated plate .....  3.

- Posterolateral angle of abdominal somite VI without an arti- culated plate ..... 4.

3. Mandibles with incisorial process (Figure 135, $A$ )
Saron Thalwitz, 1891.

- Mandibles without incisorial process (Figure 135, B) .Nauticaris Bate, 1888.

4. Mandibles with incisorial process (Figure 136, A)
Merhippolyte Bate, 1888.

- Mandibles without incisorial process (Figure 136, B)Ligur Sarato, 1885.

5. Mandibles with palpus .....  6.

- Mandibles without palpus ..... 15.
79 6. Supraorbital spines absent on carapace ..... 7.
- Supraorbital spines present on carapace ..... 10.


Figure 135. A—Saron marmoratus (Olivier); $B-$ Nauticaris marionis Bate (from Holthuis, 1955).


Figure 136. $A$-Merhippolyte calmani Kemp and Sewell; $B$ Ligur ensiferus (Risso) (from Holthuis, 1955).

7. Mandibular palpus three-segmented (Figure 137, B)
.Alope White, 1847.

- Mandibular palpus two-segmented 8.

8. Carapace with two or more supraorbital spines on each side. Maxilliped III with exopods (Figure 138, B)
.Spirontocaris Bate, 1888.

- Carapace with only one supraorbital spine on each side. Maxilliped III without exopods

9. Abdominal somites dorsally rounded. Antennal and pterygostomian spines present. Branchiostegal spines absent (Figure 139, A) Lebbeus White, 1847.

Figure 137. $A$-Heptacarpus minutus Yokoja; $B$-Alope orientalis (de Man).


Figure 138. A-Trachycaris restricta (A. Milne-Edwards); BSpirontocaris lilljeborgi (Danielssen) (from Holthuis, 1955)


- Abdominal segments I and II* with two, and II, III, and IV with one dorsal carina. Carapace with one large branchiostegal spine. Antennal or pterygostomian spines absent (Figure 139, B) Birulia Brashnikow; 1903.

10. Mandibular palpus three-segmented ................................ 11 .
"Error in original. Should read "Abdominal segments I and V"一Technical Editor.


Figure 139. A-Lebbeus polaris (Sabine); B-Birulia kishinouyei (Yokoja) (from Holthuis, 1955).

- Mandibular palpus one- or two-segmented ..... 13.

11. Mandibles without incisorial process (Figure 140)
.Barbouria Rathbun, 1912.

- Mandibles with incisorial process ..... 12.

12. Carpus of pereopod II two-subsegmented (Figure 141, A) . is ..... .Caridion Goes, 1863.

- Carpus of pereopod II 9- to 12-subsegmented (Figure 141, B).Chorismus Bate, 1888.13. Carpus of pereopod II four-subsegmented. Mandibular palpusunsegmented (Figure 142, A) . .......... Leontocaris Stebbing, 1905.- Carpus of pereopod II seven-subsegmented. Mandibular palpustwo-segmented14.
80 14. Maxilliped III with endopod* (Figure 142, B)Eualus Thallwitz, 1892.
- Maxilliped III without exopod (Figure 137, A)


Figure 140. Barbouria cubensis (van Martens): anterior end (from Holthuis, 1955).

[^13]Figure 141. $A$-Caridion gordoni (Bate); B-Chorismus antarcticus (Pfeffer) (from Holthuis, 1955).


Figure 142. A-Leontocaris lar Kemp; B-Eualus gaimardi (H. Milne-Edwards) (from Holthuis, 1955).
.Haptacarpus Holmes, 1900.

> 15. Mandibles with incisorial process

- Mandibles without incisorial process ..... 20.

16. Carpus of pereopod II two- to three-subsegmented ..... 17.

- Carpus of pereopod II six- to seven-subsegmented ..... 18.

17. Carpus of pereopod II two-subsegmented (Figure 143).Phycocaris Kemp, 1916.

- Carpus of pereopod II three-subsegmented (Figure 144)
.Hippolyte Leach, 1814.

Figure 143. Phycocaris simulans Kemp (from Holthuis, 1955).


Figure 144. Hippolyte varians Leach (from Holthuis, 1955).
18. Dactyl of pereopod 1 less than one-sixth length of propodus. Telson with approximately 20 spinules on each lateral margin (Figure 145, A)
.Cryptocheles Sars, 1869.

- Dactyl of pereopod I one-third or more length of propodus. Telson with less than five pairs of spinules arranged at some distance from lateral margin 19.


Figure 14.5. A-Cryptocheles pygmaea Sars; $B$ —Thoralus cranchi (from Holthuis, 1955).
19. Epipods present on first two pairs of pereopods. Immobile* platepresent on anterior margin of third segment of antennular pedun-cle (Figure 145, B)Thoralus Holthuis, 1947.

- Epipods absent at bases of pereopods. Third segment of antennu- lar peduncle with broad movable plate on upper part of anterior margin (Figure 146, A) Thor Kingsley, 1878.

20. Carpus of pereopod II two- to three-subsegmented ..... 21.

- Carpus of pereopod II multisubsegmented ..... 25.
81 Figure 146. $A$-Thor paschalis (Heller); B—Gelastocaris paronae (Nobili) (from Holthuis, 1955).

82 21. Carpus of pereopod II two-subsegmented (Figure 138, A)Trachycaris Calman, 1906.
- Carpus of pereopod II three-subsegmented ..... 22.

22. Dactyl of last three pairs of pereopods with group of large teeth. Outer margin of scaphocerite armed with small movable teeth. Lower margin of abdominal pleura denticulate (Figure 146, B)
Gelastocaris Kemp, 1914.

- Dactyl of last three pairs of pereopods normal. Outer margin of scaphocerite edentate. Abdominal pleura without denticulation23.

23. Maxilliped III with exopods (Figure 147, $A$ ) Latreutes Stimpson, 1860.

- Maxilliped III without exopods ..... 24.

24. Epipods present on first four pairs of pereopods. Anterolateral

[^14]

Figure 147. A-Latreutes murconatus (Stimpson); B-Paralatreufes bicomis Kemp; C-Tozeuma novaezealandiae Borradaile: cephalothorax, lateral view (from Holthuis, 1955).
angle of carapace with several spinules (Figure I47, B)
.Paralatreutes Kemp, 1925.

- Epipods absent on pereopods. Anterolateral angle of carapace smooth, without spinules (Figure 147, C)

Tozeuma Stimpson, 1860.
25. Abdominal segments terminate bluntly in a large, posteromedian spine. Pleura terminate in one or two points. Carapace with longitudinal carina (Figure 148, A) .Mimocaris Nobili, 1908.


Figure 148. A-Mimocaris heterocarpoides Nobili; B—Bythocaris leucopis Sars; C-Merguia oligodon (de Man): cephalothorax (from Holthuis, 1955).

83 - Abdominal segments without large posterior spines. Pleura
26. Supraorbital spines present on carapace (Figure 148, B)
.Bythocaris Sars, 1870.

- Supraorbital spines absent on carapace ........................ 27.

27. Maxilliped III with exopods ..... 28.

- Maxilliped III without exopods (Figure 148, C)
Merguia Kemp, 1914.

28. Outer antennular flagellum bifid (Figure 149, A)
Lysmata Risso, 1816.

- Outer antennular flagellum not bifid (Figure 149, B and Figure150)Hippolysmata Stimpson, 1860.



A


## FAMILY PANDALIDAE BATE, 1888

KEY TO GENERA (FROM HOLTHUIS, 1955, WITH ADDITIONS)

1. Carpus of pereopod II divided into more than three subseg-
ments .........................................................................

- Carpus of pereopod II divided into two or three subsegments 13.

2. Carapace without longitudinal carinae (except for postrostral crest)

- Carapace with longitudinal carinae on lateral surfaces. Integument very firm
12.*

3. Rostrum articulates with carapace (Figure 151, A) ..............
.Pantomus A. Milne-Edwards, 1883.

- Rostrum does not articulate with carapace . . . . . . . . . . . . . . . . . . 4 .

4. Eyes poorly developed; cornea narrower than eye stalks (Figure 151, B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dorodotes Bate, 1888.

[^15]

Figure 150. A—Hippolysmata (Lysmatella) prima (Borradaile); B-Hippolysmata (Exhippolysmata) ensirostris Kemp (from Holthuis, 1955).


Figure 151. A-Pantomus affinis Chace; $B$-Dorodotes reflexus Bate; C-Parapandalus richardi (Coutiére) (from Holthuis, 1955).

84 - Eyes well developed; cornea much broader than eye stalks .....  5.
5. Maxilliped III with exopods .....  6.

- Maxilliped III without exopods .....  8.

6. Epipods present on at least first two pairs of pereopods .....  7.

- Epipods absent on pereopods (Figure 151, C)
.Parapandalus Borradaile, 1899.

7. Posterior lobe of scaphognathite broadly rounded or truncated. Stylocerites anteriorly pointed. Rostrum dorsally armed with at least a few fixed teeth (Figure 152, A) . . . . . . . Plesionika Bate, 1888.

Figure 152. $A$-Plesionika martia (A. Milne-Edwards); $B$-Pandalopsis.ampla Bate (from Holthuis, 1955).


- Posterior lobe of scaphognathite acutely pointed. Stylocerites broad and rounded. Rostrum dorsally armed with only movable teeth (Figure 153, A) .............. Dichelopandalus Caullery, 1896.

8. Discoid widening of inner margin of ischium of pereopod I prominent (Figure 152, $B$ )

Pandalopsis Bate, 1888.

- Discoid widening of inner margin of ischium of pereopod I absent or undetectable . 9.

9. Epipods absent on pereopods (Figure 153, B)
Peripandalus de Man, 1917.

- Epipods present on at least first two pairs of pereopods ..... 10.

10. Epipods present on pereopods I and II only.Notopandalus Yaldwyn, 1960.

- Epipods present on pereopods I to IV ..... 11.

11. Arthrobranchiae absent on pereopods (Figure 154)


Figure 153. $A-$ Dichelopandalus leptoceras (Smith); $B —$ Peripandalus serratus (A. Milne-Edwards) (from Holthuis, 1955).

Pandalina Calman, 1899.

- Arthrobranchiae present on first four pairs of pereopods ........ 12.
6.5 12. Posterior lobe of scaphognathite acute. Upper margin of rostrum with only movable teeth (Figure 155, A) . . . . Pandalus Leach, 1814.
- Posterior lobe of scaphognathite truncated. Upper margin of rostrum with both fixed and movable teeth (Figure 155, B)

Austropandalus Holthuis, 1952.
13. Pereopods II very unequal (Figure $156, A$ )

$$
\text { Heterocarpus } \Lambda . \text { Milne-Edwards, } 1881 .
$$

- Percopods II equal; carpus six-subsegmented (Figure 156, B) .....
.Heterocarpoides de Man, 1917.


Figure 154. Pandalina brevirostris (Rathke) (from Holthuis, 1955).

86 14. Arthrobranchiae and epipods present on first four pairs of pereopods. Maxilliped III with exopods. Carpus of pereopod II two-subsegmented

- Pereopods without arthrobranchiae and epipods. Maxilliped III

85 Figure 155. $A$-Pandalus montagui Leach; B-Austropandalus grayi (Cunningham) (from Holthuis, 1955).

85 Figure 156. $A$-Heterocarpus sibogae de Man; $B$-Heterocarpoides levicarina (Bate) (from Holthuis, 1955).

without arthrobranchiae.* Carpus of pereopod II three-subsegmented
15. Pleura of first four abdominal somites rounded. Abdominal somite VI without median spine. Tip of telson pointed (Figure 157, A) Chlorotocus A. Milne-Edwards, 1882.

- Pleura of abdomen pointed on lower side. Abdominal somite VI with a large spine in middle of distal margin. Tip of telson bifurcate (Figure 157, B) ..........................Chlorotocoides Kemp, 1925.

16. Supraorbital spine present. Mandibles with three-segmented palpus. Rostrum long and slender (Figure 158).
[^16]- Supraorbital spine absent. Mandibles without palpus. Rostrum short and high (Figure 159) . . . . . . . . . . . . . Chlorocurtis Kemp, 1925.



Figure 157.A-Chlorotocus novaezealandiae (Borradaile); $\quad B$ Chlorotocoides spinicauda (de Man) (from Holthuis, 1955).


Figure 158. Chlorotocella gracilis Balss (from Holthuis, 1955).


Figure 159. Chlorocurtis jactans (Nobili): anterior end (from Holthuis, 1955).

## FAMILY PROCESSIDAE ORTMANN, 1898

## KEY TO GENERA

1. Both pereopods I chelate . . . Ambidexter Manning and Chace, 1971.

- Only one (usually right) pereopod I chelate; other with simple dactyl
. 2.

2. Pereopod I without exopods (Figure 160) ... .Processa Leach, 1815.

- Pereopod I with exopods (Figure 161) .....Nikoides Paulson, 1875.

87 Figure 160. Processa canaliculata Leach (from Holthuis, 1955).


87 Figure 161. Nikoides maldivensis Borradaile (from Holthuis, 1955).


## FAMILY CRANGONIDAE BATE, 1888

KEY TO GENERA (FROM HOLTHUIS, 1955; ZARENKOV, 1965)

1. Pereopod II absent (Figure 162, A) . . . . . . Paracrangon Dana, 1852.

- Pereopod II present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Pereopod II simple, without chelae . . . . . . . . . . . . . . . . . . . . . . . . 3 .

- Pereopod II chelate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.

3. Eyes reduced to a small sharp process; cornea absent
.Prionocrangon Wood-Mason and Alcock, 1891.

- Eyes well developed; cornea present and large . . . . . . . . . . . . . . . 4 .

4. Pereopod II rudimentary, slender, and short; does not reach end of merus of pereopod I. Scaphocerite with a terminal spine (Figure


Figure 162 -Paracrangon areolata Faxon; $B$-Sabinea hystrix (A. Milne-Edwards); $C$-Argis toyamaensis (Yokoya) (from Holthuis, 1955).

162, B)
.Sabinea Ross, 1835.
87 - Pereopod II well developed and with broad segments; extends beyond merus of pereopod I. Scaphocerite without terminal spine (Figure 163) .Vercoia Baker, 1904.
5. Dactyl of pereopods IV and V flat and broad (Figure 164).
.Nectocrangon Brandt.

- Dactyl of pereopods normal and broad*
. 6.

6. Pereopod II almost equal in length to other pereopods . ..........7.

- Pereopod II shorter than other pereopods ....................... 12.
$887 . .^{* *}$ Endopod on pleopod II of male totally reduced; appendix masculina long, slender, and with several short terminal spines (Figure 165)
.Notocrangon Coutiére, 1905
(only species: $N$. antarcticus Pfeffer, 1887).

8. Body sculpture well developed. Not less than two spines on median line of carapace . 9.

- Body sculpture póorly developed. Only one spine on median line of carapace (Figure 166) .Crangon Fabricius, 1758. a. Maxilliped III with reduced arthrobranchiae. Dorsal carina on

[^17]Figure 163. Vercoia gibbosa Baker
(from Holthuis, 1955)



Figure 164. Nectocrangon crassa Rathbun. (legend same as in Figure 166) (from Zarenkov, 1965).

Figure 165. Notocrangon antarcticus (Pfeffer) (legend same as in Figure 166) (from Zarenkov, 1965).



Figure 166. Crangon ralli Rathbun: $A$-carapace (dorsal view); $B$-sixth abdominal segment; $C$-endopod of pleuropod II of male (from Zarenkov, 1965).
sixth abdominal segment barely noticeable or absent
. Subgenus Crangon Fabricius, 1758.

- Maxilliped III without arthrobranchiae. Dorsal carina on sixth abdominal segment well developed but does not reach to posterior margin of segment.
.Subgenus Neocrangon Zarenkov, 1965.

9. Not less than three spines or low tubercles on median line of carapace 10.

- Two spines or tubercles on median line of carapace; lateral spine in gastric region. Sixth abdominal segment cylindrical with two distinct carinae which do not reach its posterior margin (Figure 167)

Mesocrangon Zarenkov, 1965.


Figure 167. Mesocrangon intermedia (Stimpson) (legend same as in Figure 166) (from Zarcrkov, 1965).

Figure 168. Metacrangon robusta (Kobjakova) (legend same as in Figure 166) (from Zarenkov, 1965).


Figure 169. Rhynocrangon sharpi (Ortmann) (legend same as in Figure 166) (from Zarenkov, 1965).

10. Dorsal carinae of sixth abdominal segment sharp and reach its posterior margin

- Dorsal carinae of sixth abdominal segment distinct but do not reach its posterior margin. Anterior margin of carapace raised. Suborbital spine separated from orbital by a narrow incision (Figure 168)
.Metacrangon Zarenkov, 1965.
90 11. Endopod of pleopod II of male with only one or two terminal setae and longer than appendix masculina (Figure 169)
.Rhynocrangon Zarenkov, 1965.
- Endopod of pleopod II of male highly reduced; appendix masculina large and with thick naked setae (Figure 170).

Sclerocrangon G. O. Sars, 1883.
12. Lateral sides of body with six or seven branchiae each; branchial tips directed backward (Figure 171) . . . . . Pontophilus Leach, 1917.


Figure 170. Sclerocrangon derjugini Kobjakova (legend same as in Figure 166) (from Zarenkov, 1965).


Figure 171. Pontophilus bidentatus (de Haan) (from Holthu's,

- Lateral sides of body with eight branchiae each; branchial tips directed forward (Figure 172) . . . . . . . . . . . . Pontocaris Bate, 1888.

Tribe Stenopodidea Bate, 1888
FAMILY STENOPODIDAE HUXLEY, 1878
KEY TO GENERA (FROM HOLTHUIS, 1955)

1. Body compressed. Telson elongated; tip terminates in two strong

Figure 172. Pontocaris lacazei (Gourret) (from Holthuis,

spines, sometimes with a small spinule between them. Endopod of uropod with two dorsal crests: median crest strong and inner one weaker with several dorsal hairs. Maxilliped III with welldeveloped exopod . 2.

- Body depressed. Telson broad and lanceotate or rectangular; terminates in three or five spines of equal size (sometimes without terminal spinule). Endopod of uropod with one median dorsal crest. Maxilliped III without or with rudimentary exopod (sometimes exopod well developed). . .................................. . . 5 .

2. Dactyl of pereopods IV and $V$ biunguiculate and short . .........3.

- Dactyl of pereopods IV and V simple and relatively long and slender
913 . Carapace and abdomen densely covered with uniformly distributed stout spines sometimes arranged in longitudinal rows. Spines hard and anteriorly directed. Ischium of maxilliped III with outer spinules (Figure 173, A) ............Stenopus Latreille, 1819.
- Abdomen without dorsal spines, sometimes with spinules near lateral margins of pleura. Carapace with spines along posterior margin of cervical groove, often in parallel rows. Spines erect, anteriorly directed, and pressed to surface of carapace. Ischium of maxilliped III without outer spinules (Figure 173, B)
.Odontozona Holthuis, 1946.

4. Carapace with distinct dorsal row of spines along posterior margin


Figure 173. A—Stenopus hispidus (Olivier); B—Odontozona spongicola Alcock and Anderson (from Holthuis, 1955).
of cervical groove. Propodus of pereopod III not more than twice as wide as carpus. Fingers of pereopod III edentate (Figure 174) .. . . . . . . . . . . . . . . . . . . . . . . . .Richardina A. Milne-Edwards, 1881.

- Carapace smooth or with uniformly arranged spines in an indistinct row along posterior margin of cervical groove. Propodus of pereopod II* more than twice as wide as carpus. Fingers of pereopod III distinctly dentate along cutting edges (Figure 175).
.Engystenopus Alcock and Anderson, 1894.


Figure 174. Richardina spimicincta A Milne-Edwards (from Holthuis, 1955).
5. Maxilliped III with long and slender exopod. Carapace covered with large number of spines. Pereopod I with setigerous organ on ventral side of anterior part of carpus and on posterior part of propodus (Figure 176) ............. Microprosthema Stimpson, 1860.

- Exopod on maxilliped III absent or rudimentary. Carapace smooth or with few spines near anterior margin. Pereopod I without setigerous organ

[^18]

Figure 176. Microprosthema validum Stimpson (from Holthuis, 1955).
6. Chela of pereopod III with serrate upper and lower margins. Exopod present on maxilliped II, and rudimentary on maxilliped III (Figure 177, A) . .................... . Spongicola de Haan, 1844.

- Chela of pereopod III with smooth upper and lower margins.


Figure 177. A—Spongicola venusta de Haan; $B$-Spongicoloides inermis (Bouvier) (from Holthuis, 1955).

Genus Stenopus Latreille, 1819

KEY TO SPECIES (FROM HOLTHUIS, 1955)

1. Outer margin of scaphocerite smooth aver quite some distance before terminal tooth. No distinct transverse rows of spinules on last three abdominal somites; somite VI with spinules arranged more or less in distinct longitudinal rows
. 2.

- Outer margin of scaphocerite serrate up to terminal tooth. Spinules on last three abdominal somites arranged in distinct transverse rows . 3.

2. Rostrum ventrally smooth. All segments of pereopods I, II, IV, and V smooth or armed with scattered spinules (Figure 173, A)
.S. hispidus (Olivier, 1811).
93 - Rostrum with three to nine spines on ventral surface. Most segments of pereopods I, II, IV, and V with longitudinal rows of numerous spinules
S. tenuirostris de Man, 1888.
3. Rostrum with a lateral row of spines. Scaphocerite with three or more spinules on base of outer margin; upper surface always with longitudinal rows of spinules . . . . . . . . . . . .S. spinosus Risso, 1826.

- Rostrum with one lateral spine or no spine, and rarely with two spines. Scaphocerite with one spinule at base of outer margin; upper surface smooth . ................ S. scutellatus Rankin, 1898.


## Genus Odontozona Holthuis, 1946

KEY TO SPECIES (FROM HOLTHUIS, I946)

1. Species inhabits Indo-Pacific region .............................. 2.

- Species inhabits northwest coast of Africa from Sudan to Bojador Cape ................................ O. edwardsi (Bouvier, 1908).

2. Posterior half of carapace groove with several distinct transverse rows of spinules. Carapace flat 3.

- Posterior half of carapace, behind row of spinules along cervical groove, without spinules. Carapace convex (Figure 173, B)
O. spongicola (Alcock and Anderson, 1899).

3. Abdomen without grooves. Carapace with several distinct rows of spinules behind cervical groove; several spinules located near anterior margin but not dense rows ...... O. ensifera (Dana, 1852).

- Abdominal somites I, II, IV, V, and VI with distinct transverse grooves and somite III with distinct longitudinal grooves. Carapace densely covered with numerous spinules arranged more or less in transverse rows . ......... O. sculpticaudata Holthuis, 1946.

Genus Richardina A. Milne-Edwards, 1881

KEY TO SPECIES (FROM HOLTHUIS, 1946)

1. Row of 25 to 30 spines located posterior to cervical groove. Outer margin of scaphocerite with two to five median teeth. Outer margin of exopod of uropod with four to five teeth (Figure 174) .... ........................... R. spinicincta A. Milne-Edwards, 1881.

- Row of 16 spines located posterior to cervical groove. Outer margin of scaphocerite with six to eight teeth. Outer margin of exopod of uropod usually with seven teeth
.R. fredericii Le Bianco, 1903.


# Genus Engystenopus Alcock and Anderson, 1894 

> KEY TO SPECIES (FROM HOLTHUIS, 1946)

1. Carapace without spinules. Fingers of chelae of pereopod I not very long but slender. Propodus and carpus of pereopods IV and $V$ not divided into subsegments or indistinctly subdivided (Figure 175)
E. palmipes Alcock and Anderson, 1894.

- Carapace covered with spinules. Fingers of chelae of pereopod I very long and slender. Propodus and carpus of pereopods IV and $V$ distinctly subsegmented
E. spinulatus Holthuis, 1946.


## Genus Microprosthema Stimpson, 1860

## KEY TO SPECIES (FROM HOLTHUIS, 1946)

1. Propodus of pereopod III with distinct dorsal crest . . . . . . . . . . . . 2 .

- Propodus of pereopod III without distinct dorsal crest .......... 3 .

2. Posterior half of dorsal surface of abdominal somite III with short longitudinal median carina. Outer margin of scaphocerite with two or three strong teeth (Figure 176)
M. validum Stimpson, 1860.

- Longitudinal median carina absent on posterior half of dorsal surface of abdominal somite III. Outer margin of scaphocerite with five to six small teeth . . . . . M. semilaeve (van Martens, 1872).

3. Abdomen smooth. Telson with two longitudinal crests, each with three strong spines. Scaphocerite broad
M. plumicome (Richters, 1880).

- Abdomen with transverse rows of tubercles. Telson with longitudinal crests, each with one strong spine. Scaphocerite very narrow with poorly developed external tooth
.M. scabricaudatum (Richters, 1880).


## Genus Spongicola de Haan, 1849

## KEY TO SPECIES (FROM HOLTHUIS, 1946)

1. Dactyl of pereopod III with one ventral tooth located against dorsal tooth of fixed finger. Dactyl of pereopods IV and V triunguiculate (Figure 177, A) ............ .S. venusta de Haan, 1841.

- Ventral tooth on dactyl of pereopod III coincident with two dorsal teeth of fixed finger. Dactyl of pereopods IV and V biunguiculate . .

2. Merus of pereopod III with two ventral spines. Fingers of pereopod III less than three-fourths length of palm
.S. andamanica Alcock, 1901.

- Merus of pereopod III without ventral spines but with one dorsal and one lateral spine. Fingers of pereopod III more than threefourths length of palm
.S. henshawi Rathbun, 1906.


## Genus Spongicoloides Hansen, 1908

KEY TO SPECIES (FROM HOLTHUIS, 1946)

1. Epipods present on bases of pereopods I to IV

- Epipods absent on bases of pereopods I to IV but sometimes scars visible in their place

2. Maxilliped III and pereopods I to IV with two arthrobranchiae each. Scars of epipods visible on pereopods.
.S. evolutus (Bouvier), 1905.

- Maxilliped III and pereopods I to IV with only one arthrobranchia each. Scars of epipods not visible on pereopods . 3.

3. Cornea equal to or wider than stalk. Carapace with some spinules on anterior portion . .................. . S. profundus Hansen, 1908.

- Cornea much narrower than stalk. Carapace smooth (Figure 177, B)
.S. inermis (Bouvier), 1905.


## SUBORDER REPTANTIA BOAS, 1880

KEY TO SECTIONS (FROM BALSS, 1957)

1. Pereopod III similar to pereopod I, either chelate or simple, or almost cylindrical. Abdomen always straight and symmetrical with well-developed pleura and a broad tail fan
95 - Percopod III differs from pereopod I and nonchelate. Abdomen rarely straight but symmetrical with well-developed pleura and a tail fan
. 3.
2. Rostrum small or absent (except in Palinurellus). Body often slightly depressed. Chelae usually absent; if present, movable finger located on outer side
.Section Palinura (spiny lobsters or rock lobsters).

- Rostrum weil developed. Body almost cylindrical. Pereopods chelate; movable finger of chelae located on inner side

Section Astacura (cray fishes).
3. Pereopod V always differs from pereopod III in size, shape, and location. Abdomen slightly reduced, very rarely straight and symmetrical, but still performs a number of functions other than reproduction and egg-laying. Uropods almost always present. Maxilliped III usually narrow . . . . . . . . . . . . . . Section Anomura.

- Pereopod V similar to pereopod III. Abdomen small, symmetrical, straight, folded under cephalothorax, and functions only in reproduction. Uropods absent. Maxilliped III usually broad
.Section Brachyura (crabs).
Section PALINURA Borradaile, 1907
KEY TO TRIBES (FROM BALSS, 1957)

1. Pereopods I to IV chelate; movable finger of chelae located on
outer side. Pereopod I rarely longer than all others. Telson terminates in a cusp . ............................. Tribe Eryonidea.

- Pereopods I to IV nonchelate. Pereopod I rarely longer than others. Telson lobate ......................... Tribe Scyllaridea.

Tribe Eryonidea de Haan, 1844
FAMILY POLYCHELIDAE WOOD-MASON, 1877
Polychelidae is the only extant family of this tribe. The other families are extinct.

KEY TO GENERA

1. Eye stalks located in deep incision on anterior margin of carapace. Finger of cheliped I without tooth . . . . . . . . . . . . . . . . . . . . . . . . 2 .

- Eye stalks located below and parallel to anterior margin of carapace. Finger of cheliped I with subapical tooth

Willemoesia Grote, 1873.
2. Epipod of maxilliped III fairly large, normal, and raised into branchial chamber (Figure 178). . . . . . . . . . Polycheles Heller, 1862.

- Epipod of maxilliped III resembles a simple papilla, a membranous outgrowth of the podobranchia (Figure 179).
.Stereomastis Bate, 1888 .


Figure 178. Polycheles typhlops peramatus Holthuis (from Holthuis, 1955).

Figure 179. Stereomastis sculpta (Smith) (from Holthuis, 1952).


Tribe Scyllaridea Borradaile, 1870
KEY TO FAMILIES

1. Carapace almost cylindrical in shape. Antennae with long segmented flagella . . . . . . . . . . . . . . . Family Palinuridae Gray, 1847.

- Carapace more or less flat. Antennae short and flat; flagella nonsegmented, flat, and spatulate
.Family Scyllaridae White, 1847.
FAMILY PALINURIDAE GRAY, 1847
KEY TO GENERA

1. Supraorbital spines or processes present above eye stalks and directed anteriorly. Carapace armed with spines and tubercles ....

- Supraorbital spines or processes absent. Carapace uniformly covered with tubercles but without spines

Palinurellus van Martens. ${ }^{4}$
2. Supraorbital spine dorsally smooth. Abdominal somites never

[^19]with more than one dorsal transverse groove; surface sometimes covered with a scaly sculpture

- Supraorbital spine dorsally serrated. Abdominal somites with four to five transverse grooves; surface nonsculptured


## Justitia Holthuis.

3. Carapace almost prismatic in shape. In female pleopod II with well-developed appendix interna, equal in size to those of other pleopods . 4.

- Carapace cylindrical. In female appendix interna of pereopod* II reduced (or absent) compared to other pleopods . 6

4. Antennules short; only third segment of peduncle reaches last segment of antennal peduncle. Pleopod I absent in female. Pereopods smooth or covered with short hairs . 5.

97 - Antennules very long; first segment of peduncle extends beyond last segment of antennal peduncle. Pereopods covered with dense woolly-looking bristles. Supraorbital spines resemble expanded outgrowths with serrate anterior margin

Palinustus A. Milne-Edwards.
5. Supraorbital spines confluent with median line of carapace Linuparus White (only species: L. trigonus [von Siebold, 1824]).

- Supraorbital spines well separated ............ Puerulus Ortmann.

6. Antennular flagella short, shorter than half length of peduncle. In female endopod of pereopod** II with well-developed appendix interna 7.

- Antennular flagella longer than peduncle. Supraorbital spines ventrally smooth. In female endopod of pleopod II without appen-


7. Stridulatory organ at base of antenna absent. Anteroventral margin of supraorbital spine smooth . .......................... . . 8 .

- Stridulatory organ present. Anteroventral margin of supraorbital spine serrate .................................. Palinurus Fabricius.

8. Carapace with rounded sides and covered with a large number of almost similar spines. Abdomen smooth or covered with a scaly sculpture

Jasus Parker.

- Carapace with angular sides and longitudinal crests armed with spines. Abdomen with median carina

Projasus George and Grindley, 1964 (only species: P. parkery [Stebbing, 1902]).

[^20]
## Genus Jasus Parker, 1884

## KEY TO SPECIES

1. Transverse grooves present on dorsal surface of abdominal somites ..................................................................... . 2.

- Transverse grooves absent on abdominal somites. Species found off Australia ...............J. verrauxi (H. Milne-Edwards, 1851).

2. First somite of abdomen either fully or partially sculptured.......3.

- First somite of abdomen entirely smooth. Species found off island of Juan-Fernandez (Chile)
J. frontalis (H. Milne-Edwards, 1837).

3. First somite of abdomen sculptured posteriorly only behind transverse groove
. 4.

- First somite of abdomen sculptured throughout. Species found off South Africa . ............. J. lalandii (H. Milne-Edwards, 1837).

4. Sculpturing behind transverse groove of first somite of abdomen in form of a broad band covering almost entire posterior portion

- Sculpturing behind transverse groove of first somite of abdomen restricted to a narrow strip
.6.

5. Abdominal somites II to VI entirely sculptured with convex scales. Scales numerous and small and arranged in four to five transverse rows. Only that part of somite covered by tergum of preceding one smooth. Species found off southwest coast of Australia and near Tasmania
J. novaehollandiae Holthuis, 1963.

- Abdominal somites II to VI sculptured with larger scales arranged in just two to three rows. Species found off New Zealand
J. edwardsii (Hutton, 1875).

6. Sculpturing on abdominal somites II to VI in form of a ribbon in middle of abdomen; anterior and posterior margins smooth. Species found near Tristan-de-Cunha Islands
J. trisiani Holthuis, 1963.

- Abdominal somites II to VI without smooth anterior and posterior margins. Species found off San Paolo and Amsterdam
J. paulensis (Heller, 1863).

KEY TO SPECIES

1. Species found in West Indies ...... P. gundlachi van Martens, 1878.

- Species found off Mauritius Island (Indian Ocean)
.P. wieneckii (de Man, 1881).


## Genus Palinurus Fabricius, 1798

## KEY TO SPECIES

1. Spiny lobsters found in eastern Atlantic Ocean and Mediterranean Sea

- Spiny lobsters found in Indian Ocean along southeastern coast of Africa, from Agulhas up to Mozambique
P. gilchristi Stebbing, 1898.

2. Spiny lobsters found along African coast and in Mediterranean Sea

- Spiny lobsters found around Cape Green. Body color red. Bellshaped pattern present on body, especially on pereopods
.P. charlestoni Forest and Postel, 1964.

3. Pereopod I with false chela due to deep incision on distal end of propodus opposed to dactyl. Body color wine-red. Species found primarily in Mediterranean Sea and along African coast no farther south than Cape Bojador
P. elephas (Fabricius, 1787).

- Pereopod I almost nonchelate since incision in distal part of propodus only in form of a small notch. Body color pink; appears marbled, especially on walking legs. Species found primarily near Africa, from the Canary Islands up to Cape Green; also found along northern African coast only up to Tunisia in the Mediterraneán Sea . . . . . . . . . . . . . . . . . . . . . . . . . . mauritanicus Gruvel, 1911 .


## Genus Palinustus A. Milne-Edwards, 1881

## KEY TO SPECIES

1. Median tooth present on anterior margin of carapace P. truncatus A. Milne-Edwards. 1880.

- Median tooth absent on anterior margin of carapace
P. mossambicus Barnard, 1926.


## Genus Justitia Holthuis, 1946

## KEY TO SPECIES

1. Pereopod I slightly shorter than pereopod II and has a straight dactyl . . . . . . . . . . . . . . . . . . . . . . . . . . J. japonica (Kubo), 1955.

- Percopod I significantly longer than pereopod II and has a considerably curved dactyl ....... J. longimana (H. Milne-Edwards), 1837.


## Genus Puerulus Ortmann, 1897

KEY TO SPECIES (FROM BERRY, 1969)

1. Postorbital spines absent. Tubercles on carapace well developed
and nonpubescent. Eyes small and longer than broad ........... . 2 .

- Postorbital spines present. Tubercles on carapace low and pubescent. Eyes large and broader than long . .P. velutinus Holthuis, 1963.

2. Two teeth situated between supraorbital horns and cervical grooves . .............................................................. . . 3 .
99 - Three or more teeth situated between supraorbital horns and cervical grooves. Dactyl of pereopod* $V$ does not form chela
P. angulatus (Bate, 1888).
3. Median carina of carapace with three postcervical spines. Pereopod $V$ chelate in male .P. carinatus Borradaile, 1910.

- Median carina of carapace with five postcervical spines. Pereopod V nonchelate in male
P. seweelli Ramadan, 1938.


## Genus Panulirus White, 1847

## KEY TO SPECIES

1. Exopod present on maxilliped III................................... . . 2.

- Exopod absent on maxilliped III ................................. 11 .

2. Exopod with flagellum on maxilliped III. . . . . . . . . . . . . . . . . . . . . 3 .

- Exopod without flagellum on maxilliped III . .................... . . . 9 .

3. Spiny lobsters found in Indian and Pacific Oceans............... 4.

- Spiny lobsters found in Atlantic Ocean (east of American coast from Florida to Rio de Janeiro, and near Bermuda, Bahamas, and Antilles) . . . . . . . . . . . . . . . . . . . . . . . . . . .P. argus (Latreille, 1804).

4. Spiny lobsters found in Indo-Pacific region but not found along Pacific coast of America. Transverse grooves on abdomen continuous

$$
5
$$

- Spiny lobsters found along Pacific coast of America. Transverse grooves on abdomen interrupted. . . . .P. interruptus (Randall, 1839).

5. Transverse grooves on abdominal somites III and IV connected with respective grooves of pleura. Pleopods on abdominal somite II without endopod in male.

- Transverse grooves on abdominal somites III and IV not connected with respective grooves of pleura. Pleopods on abdominal somite II with exopod and endopod (Figure 180)

> P. japonicus (von Siebold, 1924).
6. Transverse grooves on abdominal somite II connected with grooves of pleura

- Transverse grooves on abdominal somite II not connected with grooves of pleura (Figure 181) ...........P. pascuensis Reed, 1954.

[^21]

Figure 180. Panulirus japonicus (from von Siebold, 1924).


Figure 181. Panulirus pascuensis Reed (female) (from George and Holthuis, 1965).
7. Anterior margin of pleura ot abdominal somite II edentate; abdomen with dorsal spots 8.

- Anterior margin of pleura of abdominal somite II with a series of distinct teeth; abdomen with transverse stripes (Figure 182) .P. marginatus (Quoy and Gaimard, 1825).

8. Posterior margin of thoracic sternite in adult female with two dis-
tinct teeth; posterior half of abdominal somite II without pubescent zone .P. longipes (A. Milne-Edwards, 1868).

- Posterior margin of thoracic sternite in adult female edentate; pubescent zone present on abdominal somite II behind transverse groove in form of transverse belt (Figure 183)

Figure 182. Panulirus marginatus (Quoy and Gaimard) (male) (from George and Holthuis, 1965).


Figure 183. Panulirus cygnus George (male) (from George and Holthuis, 1965).

9. Antennular plate with one pair of spines. Species found in Atlantic Ocean 10.

- Antennular plate with two pairs of spines connected by their bases. Species found in Indo-Pacific region
P. pericillatus (Olivier, 1791).

10. Transverse grooves on abdominal somites II to V interrupted. One or more well-developed sharp teeth present on anterior margin of abdominal pleura ....................... P. echinatus Smith, 1869.

- Transverse grooves on abdominal somites II to V continuous. At most, tubercles present on anterior margin of pleura of abdominal somites I to V , which are very rarely pointed

> P. guttatus (Latreille, 1804).
11. Exopod of maxilliped II with well-developed flagellum ......... 12.

- Exopod of maxilliped II without flagellum or with a reduced one

[^22]12. Spiny lobsters found in Atlantic Ocean

- Spiny lobsters found in Indo-Pacific region P. polyphagus (Herbst, 1793).

13. Transverse grooves absent on dorsal side of abdominal somites. Species distributed throughout western Atlantic Ocean

> P. laevicauda (Latreille, 1817).

- Interrupted transverse grooves present on dorsal side of abdominal somites. Species distributed throughout eastern Atlantic Ocean
P. rissonii (Desmarest, 1825).

14. Exopod of maxilliped II without flagellum ...................... 15.

- Exopod of maxilliped II with reduced flagellum
P. homarus (L., 1758) - (P. bürgeri de Haan, 1841P. dasypus Latreille, 1804).

15. Spiny lobsters found along Pacific coast of America . . . . . . . . . . 16.

- Spiny lobsters found in Indo-Pacific region, but never along Pacific coast of America

17. 
18. Small number of scattered, but not highly raised spines on carapace. Three large spines occur in hepatic region of carapace and one small spinule above posterior spine.
P. gracilis Streets, 1871.

- Numerous highly raised spines on carapace. In addition to three large spines in hepatic region, three to four smaller ones also present
.P. inflatus (Bouvier, 1895).

17. Groove in front of posterior margin of carapace at least equal in width to marginal crest and broad in the middle. Abdomen with narrow transverse dull stripes or without them . . . . . . . . . . . . . 18.

- Groove in front of posterior margin of carapace narrower than marginal crest and almost the same width throughout its length. Abdomen smooth, without narrow transverse dull stripes

18. Abdominal somites with well-developed lower pubescent regions. Pleopod V in male twice as long as wide. Uniform small dots scattered over abdomen and no transverse dull stripes
.P. stimpsoni Holthuis, 1963.

- Abdominal somites without lower pubescent regions or with poorly defined ones. Pleopod V in male approximately three times as long as wide. Abdomen with narrow transverse dull stripes
.P. versicolor Latreille, 1804.


## FAMILY SCYLLARIDAE WHITE, 1847

## KEY TO GENERA

1. Body moderately depressed. Carapace equal in length to width . .2.

- Body highly depressed and discoid. Carapace width greater than

2. Exopod of maxilliped III with flagellum; 21 branchiae present. . .3.

- Exopod of maxilliped III without flagellum; 19 branchiae present .. .Scyllarus.
102 3. Abdominal somite I with transverse continuous groove. Distal segment of antenna with large number of distinct teeth . . . . . . Arctides.
- Abdominal somite I without transverse groove. Distal segment of

4. Eyes located between median line of body and outer corners of carapace .5.

- Eyes located nearer outer corners of carapace . . . . . . . . . . . . Thenus (only species: T. orientalis [Lund]).

5. Eyes located nearer to median line than to outer corners of carapace .....................................................Ibacus.

- Eyes located midway between median line and outer corners of


## Genus Ibacus Leach, 1815

## KEY TO SPECIES

1. Species not found near New Zealand .............................. . 2.

- Species found near New Zealand and Chatham Islands .I. alticrenatus Bate, 1888 .

2. Inner side of merus of maxilliped III divided by incomplete grooves into septa.
. 3.

- Inner side of merus of maxilliped III not divided into septa I. ciliatus (von Siebold, 1824).

3. Septa of distal end of merus of maxilliped III do not bulge ...... . 4 .

- Septa of distal end of merus of maxilliped III in form of rounded knobs I. verdi Bate, 1888.

4. All three anterior teeth on epistome directed ventrally. Branchial carina behind cervical groove highly raised. . .I. peronii Leach, 1815.

- Only posterior tooth of three anterior ones on epistome directed ventrally, other two directed anteriorly. Branchial carina behind cervical groove straight. . . . . . . . . . . . I. novemdentatus Gibbes, 1850.


## Genus Arctides Holthuis, 1960

KEY TO SPECIES

1. Species found in Indo-Pacific region ................................ 2 .

- Species found in Atlantic Ocean . . . . A. guineensis (Spengler, 1799).

2. Species found near Hawaiian Islands. .... A. regalis Holthuis, 1963.

- Species found near New Zealand and eastern Australia
A. antipodarum Holthuis, 1960.


## Genus Parribacus Dana, 1852

KEY TO SPECIES

1. Rostrum dentate ....................................................... 2.

- Rostrum edentate .................................................... 4 .

2. Fourth segment of antenna usually armed with six teeth along outer margin (excluding tip of segment).

- Fourth segment of antenna usually armed with seven teeth along outer margin (excluding tip of segment)
P. caledonicus Holthuis, 1960.

3. Abdominal somite I with five red spots along posterior margin; spots absent anteriorly
.P. scarlatinus Holthuis, 1960.

- Abdominal somite I with 8 to 10 red spots anteriorly
.P. perlatus Holthuis, 1967.

4. Anterior half of abdominal somites II to V almost smooth, with a few reticulate grooves.............................................. . . 5 .

- Anterior half of abdominal somites II to V covered with a large number of close-set tubercles. ......... .P. antarcticus (Lund, 1793).

5. Abdominal somite I with 8 to 10 irregularly scattered and brightly colored spots. Species found near Haiti and Tuamotu Islands .P. holthuisi Forest, 1954.

- Abdominal somite 1 with five bright spots, of which one small spot median and four large spots lateral, two on each side. Species found along coast of Japan
.P. japonicus Holthuis, 1960.


## Genus Scyllarides Gill, 1898

## KEY TO SPECIES

1. Spiny lobsters found in Atlantic Ocean .....  2.

- Spiny lobsters found in Indo-Pacific region ..... 8.

2. Spiny lobsters found in eastern Atlantic Ocean and MediterraneanSea 3.

- Spiny lobsters found in western Atlantic Ocean ..... 4.

3. Carapace sparsely pubescent and body relatively smooth. Anteriorhalf of abdominal somite I with three large red spots of approxi-mately the same shape . . . . . . . . . . . . .S. herklotsi (Herklots, 1851).

- Carapace densely pubescent and highly granular. Anterior dorsalhalf of abdominal somite I with median dark red spot surrounded bya light-colored yellowish ring and two semilunar spots along sides;concave side of spots directed toward median spot
S. latus (Latreille, 1803).

4. Basal part of posterior margin of pleura of abdominal somite IIdistinctly concave 5.

- Basal part of posterior margin of pleura of aludominal somite IIdistinctly convex.S. brasiliensis Rathbun.

5. One round bright red spot each side of dorsal surface of abdominalsomite I . . . . . . . . . . . . . . . . . . . . . . . . . . . S. deceptor Holthuis, 1963.

- Pattern of abdominal somite I differs from one described above .....  6.

6. Abdominal somites II to IV without median crest ..... 7- Abdominal somites II to IV with median crestS. nodifer (Stimpson, 1866).7. Branchial region of carapace with longitudinal row of large tuber-cles. One large round red spot in center of abdominal somite I.Midway between this spot and base of pleura another small spotoccurs, which is roughly triangular in shape
.S. delfosi Holthuis, 1960.

- Branchial region of carapace without longitudinal row of largetubercles. Four large red spots on abdominal somite I arrangedsymmetrically in relation to axial line
S. aequinoctialis (Lund), 1793.8. Basal part of posterior margin of pleura of abdominal somite IIdistinctly concave9.- Basal part of posterior margin of pleura of abdominal somite IIdistinctly convex . . . . . . . . S. squamosus (H. Milnc-Edwards, 1837),

9. Abdominal somites II to IV with ercsts. Spiny lobsters not found offGalapagos Islands10.- Abdominal somites II to IV without crests. Spiny lobsters found offGalapagos Islands.S. astori Holthuis, 1960.
10. Crest of abdominal somite IV does not form a very high ridge. . . 11

- Crest of abdominal somite IV forms a very high ridge
S. haani (de Haan, 1841).

104 11. Spiny lobsters not found off southeastern coast of Africa ........12.

- Spiny lobsters found off southeastern coast of Africa
.S. elisabethae (Ortmann, 1894).

12. Pregastric tooth on carapace with single tip. Species found in central
region of Pacific Ocean (Easter Island) ..........................
S. roggeveeni Holthuis, 1967.

- Pregastric tooth on carapace bifid. Species found in the Red Sea ...
.S. tridacnophaga Holthuis, 1967.


# Genus Scyllarus Fabricius, 1775 

KEY TO SPECIES

1. Species found in Indo-Pacific region ................................ 11.

- Species found in Atlantic Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.

2. Species found in western Atlantic Ocean . . . . . . . . . . . . . . . . . . . . . 8.

- Species found in eastern Atlantic Ocean (including Mediterranean Sea) ................................................................. . . . 3.

3. Rostral teeth well developed and raised . . . . . . . . . . . . . . . . . . . . . . . 4 .

- Rostral teeth very small or absent . . . . . . . . . . . . . . . . . . . . . . . . . . 6.

4. Pleura of abdominal somite II sharp and curve dorsally. Anterior part of abdominal somites overlapped by preceding somite, without a transverse groove, and covered with backwardly directed hairs.
. 5.

- Pleura of abdominal somite II obtuse and curve ventrally. Anterior part of abdominal somites overlapped by preceding somite, with a


Figure 184. Scyllarus arctus (L.): A-abdominal somite II and smooth part of abdominal somite III. (lateral view); $B$-sternite of cephalothorax (ventral view); $C$ and $D-S c y l l a r u s ~ p y g m a e u s ~$ (Bate) (legend same as above) (from Forest and Holthuis, 1960).
distinct transverse groove, and covered with backwardly directed hairs (Figure 184, C and D) ................ S. pygmaeus Bate, 1888.
5. Tip of first tooth of median carina of carapace (pregastric tooth) located slightly closer to second (gastric) tooth than to rostrum. Gastric tooth slightly above remaining teeth of median carina. Median tubercle of thoracic sternite small and conical (Figure 184, $A$ and $B$ ) .S. arctus (L.), 1758.

- Tip of pregastric tooth slightly closer to tip of rostrum than to gastric tooth. Gastric tooth much above remaining teeth of median carina. Median tubercle of thoracic sternum V quite large, broad, and with a ridge on anterior margin S. subarctus Crosnier, 1969.

6. Anterior margin of thoracic sternum forms two large lobes divided by a small cleft. Median carina of abdominal somites II, III, and IV high and raised (Figure 185) S. caparti Holthuis, 1952.

- Anterior margin of thoracic sternum with a broad cleft and straight or concave margins. Median carinae of abdomen not high but

Figure 185. Scyllarus capariz Holthuis.
$A$-dorsal view; $B$-abdomen (lateral view): C-thoracic sternites (ventral view) (from Holthuis, 1952).



B

mildly raised
7.
7. Median tubercle of last thoracic sternum small. Anterior tooth of inner margin of orbit longer than posterior one (Figure 186)
.S. paradoxus Miers, 1881.


Figure 186. Scyllarus paradoxus Miers.
$A$-dorsal view; $B$-abdominal somitc II (lateral view); Cthoracic sternites (ventral view).

- Median tubercle of last thoracic sternum sharp and curves backward; in male additional pair of large lateral teeth present. Anterior tooth of inner margin of orbit shorter than posterior one (Figure 187) .S. posteli Forest, 1963.

8. Abclominal somites I to IV with a small rounded cleft in middle of posterior margin .9.

- Abdominal somites I to IV with a deep sharply pointed cleft in middle of posterior margin 10.

9. Inner margin of orbit with two sharp, strong teeth

. S. chacei Holthuis, 1960.

- Inner margin of orbit smooth . S. planorbis Holthuis, 1969.
1015 10. Second segment of antennular peduncle dorsally flat. Abdominalsomite IV with a carinate area . . . . . . . . S. americanus (Smith, 1896).
- Second segment of antennular peduncle cylindrical. Abdominal somite IV without carinate area S. nearctus Holthuis, 1960.

11. Species not found off Juan Fernandez Islands ..... 12.

- Species found off Juan Fernandez Islands
S. delfini (Bouvier), 1909.

12. Large distoventral tooth present on propodus of pereopod III, giving it a subchelate appearance ..... 13.

- Distoventral tooth absent on propodus of pereopod III; tip appears normal ..... 14.

Figure 187. Scyllarus posteli Forest. $A$-dorsal view; $B$-abdominal somite II (lateral view); $C$-thoracic sternites (ventral view) (from Forest. 1963).

13. Second tooth of median carina of carapace very high, much higher than the first one .S. cultrifer (Ortmann), 1897.

- Second tooth of median carina of carapace not very high, only slightly higher than the first one . . . . . . . . .S. aureus Holthuis, 1963.

14. Abdominal somites with tuberculate sculpture ..... 15.

- Abdominal somites smooth or with dendroid or scaly sculpture ..... 17.

15. Outer margin of second segment of antenna with not less than four (four to seven) teeth ..... 16.

- Outer margin of second segment of antenna with just three teeth
.S. brevicornis Holthuis, 1946.

16. Posterior margin of sternum of thoracic somite $V$ with series of tubercles. Posterior half of abdominal pleura without tubercles
S. rugosus H. Milne-Edwards, 1837.

- Posterior margin of sternum of thoracic somite V without tubercles.Posterior half of abdominal pleura with longitudinal row of tuber-clesS. demani Holthuis. 1963.

17. Median carina present on abdominal somites II to V. ..... 18.

- Median carina absent on abdominal somites II to V: ..... 27.

18. Abdominal terga with more or less distinct dendroid or scaly sculp- ture ..... 19.
107 - Abdominal terga smooth, without dendroid or scaly sculpture.
Crest on abdominal somite II higher than that of other somites. Species found near Now South Wales (Australia)
S. crenatus (Whitelegge), 1900.
19. Antennal squame divided by two oblique crests ..... 20.

- Antennal squame divided by just one oblique crest ..... 21.

20. Scaly sculpture on abdomen prominent only on somite V1 and on pleura S. rubens (Alcock and Anderson), 1894.

- Scaly sculpture well defined throughout abdomen
S. martensi Pfeffer, 1881.

21. Tooth either present or absent on last thoracic sternite; if present, in form of small obtuse tubercle ..... 22.

- Large sharp tooth present on last thoracic sternite
S. omatus Holthuis, 1960.

22. Cirests on abdominal somites II to $V$ approximately equal in height ..... 26.

- Crest on one of these somites much higher than on others ..... 23.

23. Crest on abdominal somite IlI higher than those on other somites ..... 24.

- Crest on abdominal somite IV higher than those on other somites.
.S. gibberosus (de Man), 1905.

24. Rostral tooth present ..... 25.

- Rostral tooth absent. Species found in the Red Sea
S. lewinsohni Holthuis, 1967.

25. Abdominal somite I smooth. Species found around Fiji Islands,northern coast of Celebes, and near Ambiona Island
S. vitiensis (Dana), 1852.

- Large number of curved and branched longitudinal grooves present on abdominal somite I. Species found near Sulu Archipelago (Philippines) S. aesopius Holthuis, 1960.

26. Longitudinal grooves on terga of abdominal somite I partly curved and branched. Species found near Hawaiian Islands.S. modestus Holthuis, 1960.

- Longitudinal grooves on terga of abdominal somite I straight andunbranched. Species found in Japan and near Sumbawa Island(Flores Sea).S. bicuspidatus (de Man), 1905.

27. Second median tooth of carapace, if higher than other median teeth, only slightly so ..... 28.

- Second median tooth of carapace much higher than other teeth.Species found near Sulu Archipelago (Philippines) and HawaiianIslands.S. timidus Holthuis, 1960.

28. Propodus of pereopods II and III broad and laterally compressed ..... 29.

- Propodus of pereopods II and III not broad and very slightly compressed ..... 30.

29. Anterior unsculptured part of terga of abdominal somite II smooth, without transverse groove... ............... .S. batei (Bate), 1888.

- Anterior unsculptured part of terga of abdominal somite II with two parallel transverse grooves
S. bertholdi Paulson, 1875.

30. Typical dendroid pattern found on abdominal somites II to IV ... 31.

- Pattern on abdominal somites II to IV in form of simple loop with straight lateral margins. Species found in Red Sea, near Madagascar, and near Mauritius Island . .......S. pumilus Nobili, 1906.

31. Rostrum distinctly dentate; large, compressed, triangular cardiac tooth present 32.

- Rostrum edentate; cardiac tooth very low, short, and bifid. Species found off Australia . . . . . . . . . . . . . . . . . .S. amabilis Holthuis, 1963.

32. Additional transverse groove absent between posterior marginal groove of carapace and its posterior margin. Median tubercle present on last thoracic sternite ............ .S. dubius Holthuis, 1963.

- Additional transverse groove present between posterior marginal groove of carapace and its posterior margin. Median tubercle not present on last thoracic sternite. . . . . . S. sordidus (Stimpson), 1860.

Section ASTACURA Borradaile, 1907
KEY TO FAMILIES (FROM BALSS, 1957)

1. Last thoracic somites free and movable . . . . . . . . . . . . . . . . . . . . . . 2.

- Last thoracic somites fused with preceding ones

Family Homaridae.
2. Podobranchiae without lamina but stems may be alary; short falcate structures originate from ends of joints. Pleopods I absent in both sexes
. 3.

- Podobranchiae with broad bilobate lamina; falcate structures originate from ends of joints. Pleopod I present in both sexes
.Family Astacidae.

3. Antennules with well-developed flagella. Carapace not broad from below

Family Parastacidae.

- Antennular flagella either reduced or absent. Carapace broad from below Family Austroastacidae.

FAMILY HOMARIDAE

KEY TO GENERA (FROM MANNING, 1969)

1. Eyes present. Pleura of abdominal somites III to VI triangular . .2.

- Eyes absent. Pleura of abdominal somites III to VI rectangular
Thaumastocheles.

2. Scaphocerites present ..... 3.

- Scaphocerites absent ..... 7.

3. Scaphocerites foliate. Carapace with longitudinal carina ..... 4.

- Scaphocerites triangular; tips sharp. Carapace without carinaHomarus.

4. Eyes pigmented ..... 5.

- Eyes nonpigmented .Neophoberus(one species: $N$. caecus A. Milne-Edwards).5. Propodus of chela with longitudinal carina. Carapace with pairedpostcervical rows of spines along median line 6.
- Propodus of chela without longitudinal carina. Carapace withoutpaired postcervical rows of spines along median line .Enoplometopus.

6. Carapace without submedian carina behind cervical grooveEunephrops.

- Carapace with submedian carina behind cervical grooveNephrops.

7. Eyes nonpigmented. Pleura of abdominal somite II triangular- Eyes pigmented. Pleura of abdominal somite II rounded rec-tangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nephropides.
Genus Homarus Weber, 1795
KEY TO SPECIES
8. Species distributed in eastern Atlantic and southwestern IndianOceans2.

- Species distributed along Atlantic coast of North America andregion from Labrador to Carolina.H. americanus H. Milne-Edwards.

2. Species distributed in European waters up to Tromsö (Norway) inthe north and along coasts of France and Portugal, in Mediterra-nean and Black Seas, and off northwestern coast of AfricaH. gammarus (L.).- Species found only off southern Africa, from Cape of Good Hope upto Gulf of AlgoaH. capensis (Herbst).

Genus Eunephrops Smith, 1885

> KEY TO SPECIES

1. Spines present on posteromedian margin of cervical suture of carapace. Second segment of antennai peduncle unarmed


#### Abstract

- Spines absent on posteromedian margin of cervical suture of carapace. Second segment of antennal peduncle with anterolateral spines .E. cadenasi Chace, 1939.


## Genus Enoplometopus A. Milne-Edwards, 1862

## KEY TO SPECIES

1. Postcervical spines (one or two) present on carapace .....  2.

- Postcervical spines absent on carapaceE. pictus A. Milne-Edwards.

2. One postcervical spine present ..... 3.

- Two postcervical spines present E. holithuisi Gordon.

3. Spines present on pleura of abdominal somites III to V ..... 4.

- Spines absent on pleura of abdominal somites III to V
E. occidentalis (Randall).

4. Pleura of abdominal somite VI rounded; only two teeth present onposterior transverse margin of this somite ....E. antillensis Lütken.

- Pleura of abdominal somite VI sharp; six teeth present on posteriormargin of somite, one of which larger and located mediallyE. biafri Burukovksy, 1972.
Genus Nephropsis Wood-Mason, 1872
KEY TO SPECIES (FROM BOUVIER, 1917)

1. Median crest present on terga of abdominal somites II to VI .....  2.

- Median crest absent on terga of abdominal somites II to VI ..... 6.

2. Rostral spines present ..... 3.

- Rostral spincs absent; pair of postrostral spines present. Anteriormargin of epimera of abdominal somites unarmed. Epimera ofabdominal somites II to V with long lower endsN. ensirostris Alcock, 1901.

3. Only one pair of rostral spines present ..... 4.

- Several spines present: at least two pairs of rostral spines, onepair of postrostral spines, one spine on anterior margin of eachepimeron of abdominal somite II, and one pair of hepatic spines,rarely rudimentaryN. atlantica Norman, 1882.

4. Hepatic spines not present. Lower ends of epimera of abdominalsomites II to $V$ very short 5.

- One pair of hepatic spines present, sometimes rudimentary. Epim-era of abdominal somites II to V with long endsN. aculeata Smith, 1881.

5. Dorsal spine present near base of telson

- Dorsal spine absent on telson ....N. carpenteri Wood-Mason, 1885.

6. Rostrum with at least two pairs of spines. Epimera of abdominal somites II to $V$ with long lower ends

- Rostrum with only one pair of spines. Epimera of abdominal somites II to V with short lower ends and anterior margin unarmed. Transverse suture present on exopod of uropod
.N. stewarti Wood-Mason, 1873.

7. Transverse suture present on exopod of uropod . . . . . . . . . . . . . 8.

- Transverse suture absent on exopod of uropod. Spine present on anterior margin of epimera of somites II to V . .N. suhmi Bate, 1888.
110 8. Anterior margin of epimera of abdominal somite II armed with spine. Hepatic spine absent . . . . . . N. malhaensis Borradaile, 1910.
- Anterior margin of epimera of abdominal somites II, III, and IV armed with spine. Hepatic spine present .N. agassizi A. Milne-Edwards, 1880.


## Genus Nephropides Manning, 1969

KEY TO SPECIES

1. Median crest absent on abdomen . . . . . . . . N. caribbaeus Manning.

- Median crest present on abdomen (Figure 188)
.N. birsteini Zarenkoy and Semjonov.


Figure 188. Nephropides birsteini Zarenkov and Semjonov.
$A$-general (dorsal view), $B$-rostrum (lateral view); $C$-pleopod I of male; $D$-base of pereopods IV and $V$ of male; $E$-abdomen (lateral view); $F$-base of pereopods IV and V of female (from Zarenkov and Semenov, 1972).

## Genus Nephrops Leach, 1815

## KEY TO SPECIES

> 1. Carapace with seven longitudinal carinac behind cervical groove. Dorsolateral margin of rostrum continues onto carapace in the form of a postrostral carina. Antennal spines large. Scaphocerite semicircular and broad . . . .....................................................

- Carapace with five longitudinal carinae behind cervical groove.Dorsolateral margin of rostrum does not continue onto carapace.Antennal spines small. Scaphocerite narrow and lanceolate.N. norvegicus (Linne, 1875).

2. Species found in Atlantic Ocean (western Atlantic) ..... 3.

- Species found in Indo-Pacific region .....  4.
3.* Spinules absent between rows of postrostral teeth. Margin above base of pleura of abdominal somites III to V unarmed
N. binghami Boone, 1927.
- Spinules present between rows of postrostral teeth. Margin abovebase of pleura armed with spine on abdominal somites III to V ...
N. rubellus Moreira, 1903.

4. Carapace covered with spines ..... 5.

- Carapace smooth or covered with small granules ..... 7.

5. One pair of transverse grooves on each terga of abdominal somites II and III (same part of terga). which do not extend under preceding somite on bending the abdomen .....  6.

- Terga of abdominal somites II and III with two pairs of transverse grooves each .N. neptunus Bruce, 1965.

6. Each groove with complex lateral margins, pubescent anterior andposterior margins, smooth floor, and transverse row of granules.Additional groove connects in middle of anterior margin with lateralend of groove, separating jointed and nonjointed surface of terga.N. arafurensis de Man, 1905.

- Each groove simple and entirely pubescent.N. australiensis Bruce, 1966.

7. No longitudinal raised spinescent crests on chelae of pereopod I .....  8.
-- Longitudinal raised spinescent crests present on chelae of pereopod I ..... 12.
8. Transverse pubescent grooves present on some abdominal somites ..... 9.

- Transverse pubescent grooves absent on abdominal somites ..... 10.

[^23]9. Distinct transverse grooves present on first five abdominal somites. Thick tufts of setae present on ventromedian sides of dactyl of cheliped I . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. sinensis Bruce, 1966.

- Transverse grooves distinct only on abdominal somites II to III, poorly developed on abdominal somites IV to V, and absent on abdominal somite I. Dactyl of cheliped I without ventromedian setae
.N. thomsoni Bate, 1888.
10.*Spines present on longitudinal crest in cardiac region of carapace . .
- Spines absent on longitudinal crest in cardiac region of carapace . . .N. challengeri Balss, 1914.

11. Distinct tooth present midlength of inner margin of merus of cheliped I. Scaphocerite with maximum width in middle third (Figure 189) .......................... . . N. boschmai Holthuis, 1964.

- Distinct tooth absent among small spines on inner margin of merus of cheliped I. Scaphocerite with maximum width in distal third ... .N. sibogae de Man, 1916.


Figure 189. Nephrops boschmai Holthuis (from Holthuis, 1964).
12. Two pairs of small spines present on abdominal somite VI.
.N. japonicus Tapparone Canefri, 1873 (? N. sagamiensis Parisi, 1917—N. intermedium Balss, 1921).

[^24]- Spines absent on abdominal somite VI
.N. andamanicus Wood-Mason, 1892.


## Genus Thaumastocheles Wood-Mason, 1874

## KEY TO SPECIES

1. Species found off West Indies
.T. zaleucus (Willemoes-Suhm, 1875).

- Species found off Japan ...................T. japonicus Bate, 1888.


## BIBLIOGRAPHY

Anderson, W.W. and M.J. Lindner. 1945. A provisional key to the shrimps of the family Penaeidac with special reference to American forms, Trans. Amer. Fish. Soc., no. 73, pp. 284-319.
Balss, H. 1926. Decapoda. Lieferung 1. In the work Handbucher Zoologie edited by W. Kükenthal and T. Krumbach, vol. 3.
Balss, H. 1957. Decapoda. Lieferung 12. In the work Klassen und Ordnung des Tierreiches edited by Bronn. Leipzig, bd. 5, abt. 1, buch. 7.
Barnard, K.H. 1950. Descriptive catalogue of South African Decapod Crustacea (crabs and shrimps), Annals of the South African Museum, vol. 38.
Berry, P.F. 1969. Rediscovery of the spiny lobster Puerulus carinatus Borradaile (Decapocla, Palinuridea), Crustaceana, 17, 3, 239-252.
Bouvier, E.L. 1965. Crustacés décapodes (Macroures marcheurs) provenant des campagnes des yachts Hirondelles et Princesse-Alice (1885-1915), 1917, Résultats des Campagnes Scientifiques Monaco, vol. 50, part 1.
Bruce, A.J. [n.d.] On a new species of Nephrops (Decapoda, Reptantia) from the South China Sea, Crustaceana, vol. 9, no. 3.
Bruce, A.J. 1965-1966. A new species of the genus Linuparus White from the. South China Sea (Crustacea, Decapoda), Zool. Mededelingen, vol. 41, pp. 1-73.
Bruce, A.J. [n.d.]. Notes on some Indo-Pacific Pontoniinae. XI: A reexamination of Philarius lophos Barnard with a designation of a new genus, Ischnopontonia, Bulletin of Marine Science, Univ. of Miami, 16, 3, 584-598.
Bruce, A.J. [n.d.] Nephrops sinensis sp. nov., a new species of lobster from the South China Sea, Crustaceana, 10, 2, 155-166.
Bruce, A.J. 1966. Nephrops australiensis sp. nov., a new species of lobster from northern Australia (Decapoda, Reptantia), Crustaceana, 10, 3, 245-258.
Bruce, A.J. 1969. Notes on some Indo-Pacific Pontoniinae. XIII: Propontonia pellucida gen. nov., sp. nov., a new pontoniid shrimp from the Amirante Islands, Crustaceana, vol. 17, pp. 141-150.
Bruce, A.J. 1970. Notes on some Indo-Pacific Pontoniinae. XV: Hamopontonia corallicola gen. nov., sp. nov., a new pontoniid shrimp from Hong Kong, Crustaceana, 18, 1, 37-48.
Bruce, A.J. 1971. Notes on some Indo-Pacific Pontoniinae. XVII: Eupontonia noctalbata gen. nov., sp. nov., a new pontoniid shrimp from Mahe, the Seychelle Islands, Crustaceana, 20, 3, 225-236.

Burukovskii, R.N. 1972. Nekotorye voprosy sistematiki i rasprostraneniya krevetok roda Penaeus (Some problems on the taxonomy and distribution of shrimps from the genus Penaeus). Trudy AtlantNIRO, no. 42, pp. 3-21.
Burukovskii, R.N. 1972. O funktsii rostruma v krevetok (The function of the rostrum in shrimps). Trudy AtlantNIRO, no. 42, pp. 176-179.
Burukovskii, R.N. 1972. Enoplometopus biafri novyi vid raka iz semeistva Nephropidae (Decapoda, Crustacea) [Enoplometopus biafri, a new species of crayfish from the family Nephropidae (Decapoda, Crustacea)]. Trudy AtlantNIRO, no. 42, pp. 180-189.
Chace, Fenner A. and H. Hobbs Horton, 1969. The fresh-water and terrestrial decapod crustaceans of the West Indies with special reference to Dominica, U.S. Nat. Mus. Bull., no. 292.
Chace, Fenner A. 1969. A new genus and five new species of shrimp (Decapoda, Palaemonida, Pontoniinae) from the Western Atlantic, Crustaceana, 16, 3, 251-272.
Chace, Fenner A. and R.B. Manning. 1972. Two new Caridean shrimp: One representing a new family, from marine pools on Ascension Islands (Crustacea, Decapoda, Natantia), Smithsonian Contributions to Zoology, no. 131.

Cobb, Stephen P. 1971. A new species of Sicyonia (Decapoda, Penaeidae) from the Western Atlantic with notes on S. stimpsoni Bouvier, Crustaceana, 20, 1, 104-112.
Crosnier, A. 1969. Crustacés Décapodes Brachyoures et Macroures recueillis par I' "Undaunted" au sud de l'Angola: Description de Scyllarus subarctus sp. nov', Bull. Mus. Nat. Hist. Natur., 41, 5 (1970), 1214-1227.
Crosnier, $\Lambda$. and J. Forest. 1969. Note preliminaire sur les pénéides recueillis par l' "Ombango," au large du platcau continental, du Gabon à l'Angola (Crustacca, Decapoda, Natantia), Bull. Mus. Nat. Hist. Natur., ser. 2, 41, 2, 544-354.
Dall, W. 1965. Littor'al Penacinae (Crustacea, Decapoda) from northern Australia, New Guinea, and adjacent waters, Verhandel. Koninkl. Nederl. Akad. Wet. Afd. Natuurkunde, 2 reeks, vol. 56, no. 3.
de Man, J.G. 1916. Fam, Eryonidae, Palinuridae, Scyllaridae, and Nephropsidae: The Decapoda of the Siboga Exp., part 3, mon. $39 \mathrm{a} / 2$.
Forest, Jacques. 1954. Crustacés dćrapodes marcheurs des iles de T'ahiti et des Tuamotu. II: Scyllaridea, Bull. Muséum Nat. Histoire Natur., 26, 3, 345-352.
Forest, Jacques. 1963. Sur dcux Scyllarus de l'Atlantique tropical africain: $S$. paradoxus Micrs et S. posteli sp, nov. Remarques sur les Scyllarus de l'Atlantique oriental, Bull, de l'Inst. Océanogr., Monaco, vol. 60, no. 1259.
Forest, J. and L.B. Holthuis. 1960. 'The occurrence of Scyllarus pygmaeus (Bate) in the Mediterranean, Crustaceana, 1, 2, 156-163.
Garth, John S. 1958. Brachyura of the Pacific coast of America: Oxyrhyncha, Allan Hancock Pacific. Expeditions, vol. 21, part 1.

George, R.W. and L.B. Holthuis. 1965. A revision of the Indo-West Pacific spiny lobsters of the Panulirus japonicus group, Zool. Verhandel., no. 72, 36 pp.
George, R.W. and A.R. Main. 1967. The evolution of spiny lobsters (Palinuridae): A study of evolution in the marine environment, Evolution, 21, 4, 803-820.
George, R.W. and Craig B. Kensler. 1970. Recognition of marine spiny lobsters of the Jasus lalandii group (Crustacea: Decapoda: Palinuridae), $N$. Z. J. Mar. and Fresh-Water Res., 4, 3, 292-311.

Gordon, I. 1960. On the genus Justitia Holthuis (Decapoda: Palinuridac) with a note on allometric growth in Panulirus omatus (Fabricius), Crustaceana, 1, 4, 295-306.
Guntur, G. 1957. Misuse of generic names of shrimp (family Penaeidae), Syst. Zool., no. 6, pp. 98-100.
Harada, Eiji and L.B. Holthuis. 1965. 'Two species of the genus Jbacus (Crustacea: Decapoda: Reptantia) from Japan, Publ. Seto Marine Biol. Lab., 13, 1, 23-35.
Holthuis, L.B. 1946. Stenopodidae, Nephropsidac, Scyllaridae, and Palinuridae. The Decapoda Macrura of the Snellius Fxpedition. I: Biological results of the Snellius Expedition, Temminckia, 14, 7, 1-178.
Holthuis, L.B. 1952. Crustacea, Decapoda, Macrura of Chile, Rept. Lund. Univ., Chile Exped., no. 5.
Holthuis, L.B. 1952. Crustacés Décapods Macrures. Exp. Oceanogr. Belge dans les caux côtieres Africaines de l'Atlantique sud (1948-1949), Res. Sci., vol. 3, part 2.
Holthuis, L.B. 1954. On a collection ofdecapod Crustacea from the republic of I:I Salvador (Cientral America), Zool. Verhand., no. 23, pp. 2-43.
Holthuis, I. B. 1955. The recent genera of caridean and stenopodidean shrimps (class Crustacea, order Decaporla, supersection Natantia) with keys for their determination, Zool. Verhand,, no. 26, pp. 1-157.
Holhuis, L. B. 1959. The Crustacea Decapoda of Surinanie (Dutch Guiana), Zool. Verhand., no. 14.
Holthuis, L.B. 1960. 'l'wo new species of Atyid shrimp from sulterraucan waters of N.W. Australia (Decapoda: Natantia), Crustaceana, 1, 1, 47-57.
Holthuis, L.B. 1960. Preliminary descriptions of one new genus, twelve new species and three new subspecies of seyllarid lolsters (Grustacea, Decapoda Macrura), Proc. Biol. Soc., Washington, vol. 73, pp. 147-154.
Holthuis, I,B. 1961. The taxonomic status of Panulirus echinatus' Smith, 1869 (Decapoda Macrura, Palinuridae), Crustaceana, 2, 3, 223-227.
Holthuis, L.B. 1963. Preliminary descriptions of some new species of Palinuridea (Cirustacea, Decapoda Macrura, Reptantia), Koninkl, Nederl. Akad. ven. Wettenshappen Amsterdam, Rept. Proc., Series C, Zoologie, 66, 1, 54-60.
Holthuis, L.B. 19Gt. On some species of the genus Nephrops (Cirustacen, Decapoda), Zool. Mededelingen, vol, 34, pp. 72-78.

Holthuis, L.B. 1965. On spiny lobsters of genera Palinurellus, Linuparus, and Puerulus. Abst. Pap. Symposium Crustacea, Mar. Bid. Assoc., India, pp. 1-2.
Holthuis, L.B. 1967. Some new species of Scyllaridae, Proc. Koninkl. Nederl. Akad., 70. 2, 305-308.
Holthuis, L.B. 1968. Palinuridae and Scyllaridae of the Red Sea (2. Israel South Red Sea Exped., 1965, Rept. no. 7), Zool. Mededelingen, 42, 26, 281-301.
Holthuis, L.B. 1969. A new species of shovel-nosed lobster, Scyllarus planorbis, from the southwestern Caribbean and northern South America, Bull. of Mar. Science, 19, 1, 149-158.
Holthuis, L.B. and I.S. Zaneveld. 1958. De kreebten van do Neberlandse Antillen, Zool. Bijdr., no. 3, 26 pp.
Holthuis, L.B. and F.A. Villalobos. 1961. Panulirus gracilis Streets y Panulirus inflatus (Bouvier) dos especies de langosta (Crustacea, Decapoda) de la costa del Pacifico de América, Ann. Inst. Biol., Univ. México, 32, 1-2, 251276.

Holthuis, L.B. and H. Loesch. 1967. The lobsters of the Galapagos Islands (Decapoda, Palinuridea), Crustaceana, 12, 2, 214-222.
Kubo, I. 1949. Studies on the penaeids of Japanese and adjacent waters, $J$. Tokyo Coll. Fish., 36, 1, 1-467.
Kubo, I. 1954. Systematic studies on the Japanese Macrurous decapod Crustacea. 3: On the palinurid lobsters, J. Tokyo Univ. Fish., 41, 1, 96-105.
Kubo, I. 1955. Systematic studies on the Japanese Macrurous decapod Crustacea. 5: A new palinurid, Nupalirus japonicus gen. et sp. nov., J. Tokyo Univ. Fish., 41, 2, 185-188.
Kubo, I. 1963. Systematic studies on the Japanese Macrurous decapod Crustacea. 6: A new and imperfectly known species of palinurid lobster, $J$. Tokyo Univ. Fish., vol. 49, no. 1.
Manning, R.B. 1969. A new genus and species of lobster (Decapoda, Nephropidae) from the Caribbean Sea, Crustaceana, 17, 3, 303-309.
Manning, R.B. 1970. Notes on the west American nephropidean lobster, Nephropsis occidentalis Faxon, Proc. Biol. Soc., Washington, 82, 69, 865-870.
Manning, R.B. and Fenner A. Chace. 1971. Shrimp of Family Processidae from the Northwestern Atlantic Ocean (Crustacea, Decapoda, Caridea), Smithsonian Contributions to Zoology, no. 89.
Morice [sic]. 1958. Langoustes et Scyllares des petites Antilles, Rev. Trav. Peches Marit., 22, 1, 105-114.
Perez Farfante, I. 1967. A new species and two new subspecies of shrimp of the genus Penaeus from the Western Atlantic, Proc. Biol. Soc., Washington, vol. 80, pp. 83-100.
Perez Farfante, I. 1969. Western Atlantic shrimp of the genus Penaeus, Fish. Bull., U.S. Fish. Wildl. Serv., 67. 3, 461-591.
Perez Farfante, I. 1970. Claves Ilustradas para la Identification de los

Camarones Comerciales de la America Latina, Mexico Inst. Nat. Invest. Biol. Pesq. Serie Divulgacion. Instructivo, no. 3.
Perez Farfante, I. 1971. A key to the American Pacific shrimp of the genus Trachypenaeus (Decapoda, Penaeidae) with a description of a new species, Fish. Bull., 69, 3, 635-646.
Perez Farfante, 1. 1971. Western Atlantic shrimp of the genus Metapenaeopsis (Crustacea, Decapoda, Penaeidae) with descriptions of three new species, Smithsonian Contributions to Zoology, no. 79.
Perez Farfante, 1. [n.d.] Tanypenaeus caribeus, a new genus and species of the shrimp family Penaediae (Crustacea, Decapoda) from the Caribbean Sea, Bull. Marine Science, 22, 1, 185-195.
Postel, E. 1964. Langouştes de la zone intertropicale africaine, Cahiers ORSTOM.
Racek, A.A. 1955. Littoral Penaeinae from New South Wales and adjacent Queensland waters, Aust. J. Mar. Fresh-Water Res., 6, 2, 209-240.
Racek, A.A. and W. Dall. 1965. Littoral Penaeinae (Crustacea, Decapoda) from northern Australia, New Guinea, and adjacent waters, Verhand. Akad. Wet. Amst. (b), no. 3, pp. 1-116.
Ramadan, M.M. 1938. Crustacea, Penaeidae, John Murray Exped. Sci. Rept., 5, 3, 35-76.
Ramos, F. and P. de Andrade. 1950. Estudo analitico sobre Nephrops rubellus Moreira, Boletin do Instituto Paulista de Oceanografia, 1, 2, 83-92.
Starobogatov, Y.I. [n.d.] Peneidy (semeistvo Penaeidae, Crustacea, Decapoda) Tonkinskogo Zaliva [The peneids (Penaeidae, Crustacea, Decapoda) of the Gulf of Tonkin]. Fauna Tonkinskogo Zaliva i usloviva ee suschestvovaniya. Nauka, Leningrad, 415 pp.
Tirmizi, N. 1958. Crustacea, Penacidae, part II: Series Benthesicymae. In John Murray Exped. Sci. Repl.
Vinogradov, L.G. 1950. Opredelitel' krevetok, rakov i krabov Dal'nego Vostoka (Key to shrimp, crayfish, and crab of the Far East). Izvestia TINRO, vol. 33, pp. 181-350.
Willemois-Suhm, R. Von. 1875. On some Atlantic Crustacea from the "Challenger" Expedition, Trans. Linn. Soc., London (Zool.), 2, 1, 23-59.
Williams, Austin B. 1965. Marine decapod crustaceans of the Carolinas, Fish. Bull. Fish. and Wildl. Serv., U.S. Dept. Inter., 65, 1, xii +298 pp.
Yaldwyn, J.C. 1954. Nephrops challengeri Balss, 1914 (Crustacea, Decapoda, Reptantia) from New Zealand and Chatham Island waters, Trans. Roy. Soc., New Zealand, 82, 3, 721-732.
Yaldwyn, J.C. 1961. A scyllarid lobster, Arctides antipodarum Holthuis, new to New Zealand waters, Records, Don. Mus., 4, 1, 1-6.
Yaldwyn, J.C. 1969. Crustacea, Decapoda, Natantia from the Chatham rise: A deep-water bottom fauna from New Zealand, N.Z. Sci. and Industr. Bull., 139, 1, 13-53.
Zarenkov, N.A. 1965. Reviziya rodov Crangon Fabricius i Scelerocrangon G.O.

164
Sars (Decapoda, Crustacca) [Revision of genera Crangon Fabricius and Sclerocrangon G.O. Sars (Decapoda, Crustacea)]. Zool. Zhum., 44, 12, 17611775.

Zarenkov, N.A. and V.N. Scmenov. [n.d.] Novy vid roda Nephropides (Decapoda, Macrura) iz Yugo-zapadnoi Atlantiki [A new species of the genus Nephropides (Decapoda, Macrura) from the southwest Atlantic]. Zool. Zhurn., 51, 4, 599-601.

## INDEX*

Acanthephyra 55
——urpurea 55
Albunea 7
Allocaris 63
Alope 79
—orientalis 79
Alpheidae 54, 74
Alpheopsis 75
-equalis truncatus 75
Alpheus 77
—glaber 77
Ambidexter 86
Amphibetaeus 77
-jousseaume 76
Anapontonia 69
Anchistioides 71
-willeyi 72
Anchistus 69
-custos 69
Anomura 10, 95
Antecaridina 58
-lauensis 58
Appendix
-interna 10
-masculina 10
Arctides 102
—antipodarum 102
-guineensis 102
-regalis 102
Arete 76
-dorsalis 76
Aretopsis 76
—amabilis 76
Aristeinac 15, 47
Aristaeomorpha I3, 47
-foliacea 47
Aristeus 13, 47, 48
—alcocki 48
—antennatus 49
—antillensis 49
—mabahisse 49
—occidentalis 49
-semidentatus 49
—varidens 48
-virilis 48
Artemesia 16
-longinaris 16
Astacidae 108
Astacura 9, 10, 11, 95, 108
Athanopsis 76
—platyrhynchus 76
Athanas 76
-nitescens 75
Atya 58
—crassa 58
Atyaephyra 57
—desmaresti 57
Atyella 59
——brevirostris 59
Atyidae 9, 53, 56
Atypopenaeus 17, 28

- dearmatus 29
-formosus 28, 29
-stenodactylus 29
Austroastacidae 108
Austropandalus 85
—grayi 85
Automate 76
-anacanthopus 76
Axiidae 10
Balssia 73
—gasti 73
Barbouria 79
—cubensis 80
Batella 77
*Reproduced from the Russian original. Russian page numbers appear in the left-hand margin in the text-General Editor.
-parvimanus 77
Bathypalaemonella 62
—zimmeri 62
Bentheogennema 46, 47
—borealis. 47
—intermedia 47
—pasithea 47
Benthesicyminae 15, 46
Benthesigmus 12, 46
Benthonectes 47
-filipes 47
Betaeus 76
—truncatus 76
Birulia 79
—kishinouyei 80
Brachycarpus 65
-biunguiculatus 66
Brachyura 7, 10, 95
Bresilia 61
—atlantica 62
Bresiliidae 53, 62
Bythocaris 83
-leucopis 82
Campylonotidae 53, 62
Campylonotus 62
—ralhbunae 62
Cancer 12
Caridea 14, 52
Caridella 59
-cunnigtoni 58
Caridina 59
—acuminata 58
Caridinides 58
—wilkinsi 58
Caridinopsis 59
—chevallieri 59
Caridion 79
—gordoni 80
Cavicheles 71
—kempi 72
Chlorotocella 86
- gracilis 86

Chlorotocoides 86
—spinicauda 85
Chlorocurtis 86
— juctans 86
Chlorotocus 86
—novae-zealandiae 85
Chorismus 79
—antarcticus 80

Conchodites 70
--monodactylus 71
Coralliocaris 70
—superba 71
Coutierea 73
—agassizi 73
Crangon 88
—dalli 88
Crangonidae 54, 86
Creaseria 64
-morleyi 63
Cophiops 65
-caementarius 66
Cryptocheles 80
—pygmaza 81

Dantecia 60
-caudani 60
Dasella 70
—hermaniae 71
Dasycaris 70
-ceratops 70
Decapoda 4, 15
Desmocaris 63
—trispinosa 63
Dichelopandalus 84
—leptoceras 84
Disciadidae 53
Discias 53
Dorodotes 83
—reflexus 83
Dromia 4
Dromiacea II
Dromiidae 11
Dugastella 57
—marocana 58

Engystenopus 92, 93
-palmipes 91,93
-spinulatus 93
Enoplomelopts 6, 108, 109
—antillensis 109
-biafri 109
—holthuisi 109
--occidentalis 109
——pictus 109
Ephyrina 55
—hoskyni 56
Eryonidea 95
Eualus 80
—gaimardi81

Eucyphidea 8, 9, 10
Eugonatonotus 61
—crassus 61
Eunephrops 108, 109
—bairdii 109
-cadenasi 109
Eupagurus 12
Eupasiphaë 60
-latirostris 60
Eupontonia 66
Euryrhynchinae 62
Euryzhynchus 62
Exopalaemon 65
—shyliferus 64

Fennera 70
—chacei 70
Funchalia 16, 24
—balboae 24
—danae 24
—laaningi 25
—villosa 25
—woodwardi 24

Galatheidae 6
Galatheidea 9, 11
Gelastocaris 82
-paronae 81
Gennadas 46
Glyphocrangon 54
Glyphocrangonidae 54
Glyphus 60
Gnathophylididae 53, 73
Gnathophylloides 74
—mineri 74
Gnathophyllum 74
—panamense 74
Gordonella 46
-polyarthra 46

Haliporus 43, 44
—cumirostris 44
-thetis 44
Hamodactylus 71
—boschmai 72
Hamopontonia 69
Harpiliopsis 70
—depressius 70
Harpilius 67
-brevicarpus 68
Hemipenaeus 47,48
-carpenleri 48
—crassipes 48
—gracilis 48
—sibogae 48
-speciosus 48
—spinidorsalis 48
Hepomadus 47
-gladialis 47
-tener 47
Heptacarpus 80
—minutus 79
Heterocarpoides 85

- Levicarina 85

Heterocarpus 85
—sibogae 85
Hippidae 11
Hippolysmata 83
—ensirostris 83
-prima 83
-viltata 82
Hippolyte 80
-varians 81
Hippolytidae 7, 54, 78
Homaridae 108
Homarus 6, 8, 108
—americanus 108
-capensis 108
-gammarus 108
Homola 4
Hymenocera 74
—elegans 75
Hymenodora 55

- gracilis 56

Hymenopenaeus 43, 45
—aequalis 46
-aphoticus 46
—chacei 46
-debilis 46
-diomedeae 45
-doris 45
-faltachi 46
—halli 46
-laevis 45
—lucasï 45
—modestus 45
—mülleri 45
—nereus 45
—nepiunus 46
—obliquirostris 46
—-propinquus 46
—robus/us 45
-sewelli 46
—sibogae 45
-laprobanensis 45
-tropicalis 45
-villosus 45

Ibacus 102
-alticrenatus 102
—cilialus 102
-novemdentatus 102
-peronirl 102
-verdi 102
Ischnopontonia 69

Jasus 97
--edwardsii 97

- frontalis 97
- lalandii 97
—novaehollandiae 97
-paulensis 97
- tristani 97
-verrauxi 97
Jocasie 70
-lucina 71
Justitia 96, 98
-japonica 98
-longimana 98

Latreutis 82
—mucronatus 82
Leander 64
—urocaridella 63
Leandrites 63
-celebensis 63
Lebbeus 79
—polaris 80
Leucosiidae 9
Leontocaris 79
-lar 81
Leptocarpus 65

- fluminicola 65

Leptochela 61
-bermudenis 61
Lcucifcrinac 16
Ligur 78
—ensifer 78
Limnocaridella 60
—aeberti. 39
Limnocaridina 60
-tanganyike 59
Linuparus 97
—trigonus 97
Lipkebe 73

Lipkius 61
Lithodidae 11
Lucaya 61
—bigelowi 62
Lysmata 83
—trisetacea 82

Macrobrachium 65
-lar 66
Macropetasma 16
-africanum 16
Mehrhippolyle 78
—calmani 78
Meningodora 55
—mollis 56
Merguia 83
—oligodon 82
Mesocaris 58
Mesocrangon 89
—intermedia 89
Metabetaeus 77
—minutus 76
Metacrangon 89
—robusta 89
Metapenaeopris 10, 12, 13, 16, 32
—andamanensis 38
—akayebi 36
—acclicis 34, 36
-barbata 34, 36
-barbeensis 35
-beebei 33

- borradaili 37
- coniger 39
—crassissima 34,35
—dalei 37
—distincta 37
- dura 34, 35
-evermanni 36
-gerardoi 32, 33
-goodei 33
-hilarula 37
—hobbsi 32,33
—incompla 38
-insona 38
—kishinourei 33
- bushensis 39
- Lamellala 36
—lata 39
-martinella 33, 34
-miersi 32
—mineri 33
—mogiensis 37
-novaeguineae 34, 36
—palmensis 34, 35
-philippi 38
-provocatoria 39
-quinquedentata 37, 38
—rosea 34,35
—sibogae 38
-sinuosa 34
-smithi 31,32
—stridulans 34, 36
-toloensis 35
—tarawensis 37, 38
—velutina 35, 36
Metapenaeus 13, 16, 39
—affinis 42
-bernettae 43
-brevicornis 40
-burkenroadi 43
-conjuctus 41
-dalli 43
-demani 41
-dobsoni 40
-eboracensis 42
-elegans 42
-endeavouri 40
—ensis 41
-insolitus 42
-intermedius 39
—incisipes 41
-joyneri 40
-lysianassa 40
-macleaji 39
—mastersii 41
—monoceros 41
—mutatus 42
—necopinans 42
-papuensis 42
- singaporensis 42
- spinulatus 40
-stebbingi 41
-suluensis 41
-tenuipes 40
Micratya 59
-poeyi 59
Microprosthema 92,94
-plumicome 94
—scabricaudatum 94
-semilaeve 94
- validum 92,94

Mimocaris 82
—heterocarpoides 82

Natantia 9, 15
Nauticaris 78
—marionis 78
Nectocrangon 87
—crassa 88
Nematocarcinidae 53
Nematocarcinus 53
—ensifer 54
Nematopalaemon 65
—tenuipes 64
Neoalpheopsis 76
—hiatti 75
Neocrangon 88
Neophoberus 108
—caecus 108
Neopontonides 71
-beaufortensis 72
Nephropidae 10
Nephropides 108, 110
-birsteini 110
-caribbeus 110
Nephrops 8, 108, 110
—andamanicus 111
-arafurensis 111
—australiensis 111
—binghami 110
—boschmai 111
-challengeri 111
—intermedium 111
-japonicus 111
-neplunus 110
—norvegicus 110
—rubellus 110
-sagamiensis 111
-sibogae 111
-sinensis 111
-thomsoni 111
Nephropsis 108, 109
—aculeata 109
—agassizi 109
—atlantica 109
-carpenteri 109
-ensirostris 109
—malhaensis 110
-occidentalis 109
—stewarti 109
-suhmi 109
Nicoides 86
—maldivensis 87
Notocrangon 88
—antarcticus 88
Nolopandalus 84

## 170

Notostomus $\overline{5} 5$
—robustus 56
Odontozona 91, 93
-edwardsi 93
-ensifera 93
-sculpticaudata 93
-spongicola 91,93
Ogyrididae 54
Ogyrides 54
Onycocaris 68
—quadratophtalma 69
Oplophoridae 8, 9, 53, 54
Oplophorus 54
-spinosus 55
Oxystomata 9
Paguridae 4, 10
Paguropsis 10
Palaeander 65
--floridanus 64
Palaemon 64, 65
--longirostris 63
Palaemonella 66
—vestigialis 67
Palaemonetes 63
—antrorum 65
—kadiakensis 64
Palaemonias 57
-ganteri 57
Palaemonidae 7.53.62
Palaemoninae 63
Palinura 9, 10, 95
Palinurellus 96, 98
-gundlachi 98
—wieneckii 98
Palinuridae 96
Palinurus 97, 98
-charlestoni 98
—elephas 98

- gilchristi 98
-maurilanicus 98
Palinustus 97, 98
—mossambicus 98
—Iruncatus 98
Pandalidae 54, 83
Pandalina 84
-brevirostris 85
Pandalopsis 84
—ampla 84
Pandalus 85
—montagui 85

Pantomus 5, 83
—affinis 83
Panulirus 97
—argus 99
—bïrgeri 101
-cygnus 100
-dasypus 101
-echinatus 101
-gracilis 101
-gutatus 101
-homarus 101
-inflatus 101

- interruptus 99
-japonicus 99, 100
-laevicauda 101
-longipes 100
-marginatus 100
—omatus 101
—pascuensis 99, 100
-penicillatus 100
-polyphagus 101
—rissomi 101
—stimpsoni 101
Parabetaeus 76
-cullierete 76
Paracrangon 86
—areolata 87
Paralatreutes 82
—bicomis 82
Paranchistus 68
—biunguiculatus 67
Parapandalus 84
—richardi 83
Parapasiphaë 60
-sulcatifrons 60
Parapenaeopsis 13, 16, 17, 26
—acclivirositis 29
-atlantica 26
—balli 27
—cornula 27
-gracillima 27
—hardwickii 27
—hungerfordi 27
—maxillipedo 27
—nana 27
—sculptilis 27, 28
- stylifera 27
—tenella 28, 29
—uncta 27
—enusta 29
Parapenaeus 13, 16, 25
-americanus 25
-australienses 26
-fissurus 26
—investigaloris 26
- lanceolatus 26
-longipes 25
-_longirostris 26
-sextuberculatus 26
Parastacidae 108
Paratya 57
—compressa 57
Paratypton 73
—siebenrocki 73
Parribacus 102
—antarcticus 102
-caledonicus 102
—hollhuisi 103
- japonicus 103
—perlatus 102
-starlatinus 102
Pasiphaea 12, 60
—multideniata 60
Pasiphaeidae 8, 9, 10, 52, 60
Penacidae $7,9,12,14,15$
Penaeidea 3, 8, 10, 12, 15
Penaeinae 15.
Penaeus 13, 14, 16, 17
-azlecus aztecus 22
—aztecus subtilis 22
-brasiliensis 21
—brevirostris 23
—califormiensis 23
-canaliculatus 23
-duorarum dnorarum 21, 22
-duorarum notialis 22
-esculentus 19, 20
—indicus 19
- Kerathurus 23
- lalisulcatus 23
- bongystylus 23
—marginatus 23
-merguiensis 19, 20
-monodon 19, 20
—occidentalis 19
—orientalis 19
-paulensis 23
-penicillatus 21
-plebejus 24
- schmitti 18
-semisulcatus 19, 20
-setiferus 17,18
-stylirostris 18
—vannamei 18

Penaeopsis 13, 16, 31
—megalops 31
-reciacuta 31
-serrata 31
Periclimenes 67
—impar 68
Periclemeneus 68
-tridentatus 68
Peripandalus 84
——serratus 84
Phycocaris 80
--simulans 81
Philarius 69
—imperialis 69
Phyllognathia 74
-ceratophtalma 74
Physetocarididae 54
Physetocaris 54
Plalycaris 70
-latirostris 69
Plesionika 84
-martia 84
Plesiopenaeus 48
—armalus 48
-corruscans 48
—edwardsianus 47
Podophtalmus 7
Polycheles 96
-typhlops 95
Polychelidae 95
Pomagnalhus 77
-corralinus 77
Pontocaris 90
-lacazei 90
Pontomia 70
—pinnophylax 69
Pontonides 71
-unciger 72
Pontoniinae 63, 66
Pontoniopsis 70
-comanthi 69
Pontophilus 90
-bidentatus 90
Porcellana 4
Portunidae 7, 10
Potamobiidae 10
Potimirim 59
-mexicana 58
Prionocrangon 86
Procarididae 52
Procaris 52
—ascensionis 52, 53

Proces.a 86
-canaliculata 87
Processidae 54, 86
Projasus 97
—parkery 97
Propontonia 71
Protrachypene 17
-precipua 17
Psalidopodidae 53
Psalidopus 53
Psathyrocaris 61
-infirma 61
Pseudocoutierea 73
-elegans 73
Pseudopalaemon 65
—houvieri 66
Pterocaris 74
-typica 75
Puerulus 97, 98
—angulatus 99
-carinatus 99

- sewelli 99
-velutinus 98


## Racilius 77

-compressus 76
Reptantia 4. 8. 9, 10. 15. 94
Rhynchocinetidae 53, 61
Rhynchocinetus 5, 61
-typus 61
Rhynocrangon 90
--sharpi 89
Richardina 91, 93
-fredericii 93
-spinicincta 91,93

## Sabinea 86

—hystrix 87
Salmoneus 77
—jarli 76
Saron 78
—marmoratus 78
Sclerocrangon 90
-derjugini 89
Scyllaridae 6, 8, 96, 101
Scyllaridea $10,11,95,96$
Scyilarides 102
-aequinoctialis 103
—astori 103
—brasiliensis 103
-deceptor 103
-delfosi 103
—elisabethae 104
—haani 103
—herklotsi 103
—latus 103
—nodifer 103
-roggeveeni 104

- squamosus 103
-tridacnophaga 104
Scyllarus 101, 104
—aesopius 107
—amabilis 107
—americanus 106
—arctus 104
—aureus 106
—batei 107
—bertholdi 107
—bicuspidatus 107
-brevicomis 106
-caparti 105
—chacei 105
-crenatus 107
-cultrifer 106
一delfini 106
-demani 106
-dubius 108
—gibberosus 107
-lewinsohni 107
-martensi 107
-modestus 107
-nearctus 106
—ornatus 107
-paradoxus 105
-planorbis 105
-posteli 105, 106
-pumilus 107
—pygmaeus 104
-rubens 107
-rugosus 106
- sordidus 108
- subarctus $!05$
— limidus 107
-vitiensis 107
Sergestidae 7, 9, 15
Sergestinae 16
Sicyonia 49
—affinis 52
—alliaffinis 52
—brevirostris 50, 51
-burkenroadi 50
-carinata 50
-disedwardsi 51
—disdorsalis 52
—disparri 51
— dorsalis 50
—edwardsii 50
- foresti 52
— galala 52
- ingentis 52
-laevigata 49, 51
-parri 50
-penicillata 5 !
-picia 52
-stimpsoni 50
Sicyoninae 15,49
Silentia 11
Solenocera 7, 13, 43
—africana 43
—agassizii 14
-allantidis 44
- fiorea 44
—geijeskesi 44
-membranacea 43, 44
-mutator 14
-necopina 44
-vioscai 44
Solenocermae 15, 43
Spiranocaris 79
-lilljehorgi 79
Spongicola 92, 94
—andamanica!4
-henshawi 94
- venusta 92,94

Spongicolaides 92,94
—evolutus 04
—inermis!92, 94
—knchleri 94
-profundus 94
Stegopontonia 67
-commensalis 67
Stenopodidae 90
Stempoolidera 3,8,10,11,15,90
Stenopus 91,92

- hispidur 91, 92
-sculellatus 93
-spinosus 93
-tenuirastris 93
Slereamastis 96
—sculpia 96
Stridulentia 11
Sivgionaris 08
Stylodactilidae 8,53
Stplodartilus 53
Sympariphiea 60
-anuectens 6, 60

Synalpheus 77
—brevicarpus 77
Synaxidae 96
Syncaris 57
-pasadene 58
Systellaspis 56
-debilis 56
Tanypenaeus 17
-caribeus 17
Thalassinidea 8
Thalassocarididae 54
Thalassocaris 54
Thaumastocaris 68
—streptopus 67
Thaumastocheles 111, 10\&
-japonicus 111
-zaleucus 11!
Thenus 102
-orientalis 102
Thor 80
-paschalis 81
Thoralus 80
-cranchi 81
Thunor 77
—ralhbunae 77
Tozeuma 82
—novaezalandiae 82
7'rihycaris 82
-resiricta 79
Trachypenaeopris 16, 29
-mobilispinis 29
—richlersii 29
'Trogiocaris 57
-anophtalmus 57
Troglocubanus 65

- gibarensis 65

Tuleariocaris 67
Typhlocaridinae 62
Typhlocaris 62
Typhlatya 58
-garciai 58
Typhopatsa 58
Typton 4, 73
—lorlugä 73

Veleromia 72
—rerrati/rons 72
Vercoia 87
—gibbosa 87
Vir 66
—orientalis 67

Waldola 71
-schmilti 72
Willemoesia 95

Xiphopenaeus 17, 25
—kroyeri 25
—rivetti 25

Xiphocaris 56
—elongata 56


[^0]:    *Mistake in original. Should read "last segment"-General Editor.

[^1]:    *Shown in figure but omitted from legend-General Editor.

[^2]:    *Mistake in original. Should read "pereopods"-Technical Editor.

[^3]:    *Error in original. Should read "Carapace with dentate crest extending only to its center"-Technical Editor.

[^4]:    "Error in original. Should simply read "distal end"-Technical Editor.

[^5]:    *Omission in original. Should read "lateral spines"-Technical Editor.

[^6]:    *Error in original. Should be "4"-Technical Editor.
    ** Omissión in original. Should read "Pereopod IV' in female"-Technical Editor.

[^7]:    ${ }^{1}$ The geographic distribution of shrimps of this genus outside the stated limits has been assessed by Ya. I. Starobogatov (1972).

[^8]:    ${ }^{2}$ Key to species from the Indo-Pacific regions taken from Ya. I. Starobogatov (1972).

[^9]:    *Description same as under pt. 4 in the Russian original-General Editor.
    **A repetition of pt. 5 in the Russian original-General Editor.

[^10]:    *Mistake in original. Should read "Calman, 1926"-Technical Editor.

[^11]:    *Error in original. Should read "exopod of uropod"-Technical Editor.

[^12]:    *Error in original. Should read "last three pereopods"-Technical Editor.

[^13]:    *Error in original. Should read "Maxilliped III with exopod"-Technical Editor.

[^14]:    *Error in original. Should read "No movable plate present on anterior margin of third segment of antemular peduncle"- Technical Editor.

[^15]:    *Error in original. Should read " 14 "--Technical Editor.

[^16]:    *Error in original. Should read "Maxilliped III without expods"-Technical Editor.
    **Error in original. Should read " 16 "-Technical Editor.

[^17]:    *Error in original. Should read "Dactyl of pereopods IV and V normal and not broad"-Technical Editor.
    **Key for No. 7 omitted in original-Technical Editor.

[^18]:    "Error in original, Should read "Propodus of pereopod III"-'Technical Editor.

[^19]:    ${ }^{4}$ George and Main (1967) have placed this genus in the family Synaxidae.

[^20]:    *Error in original. Should read "In female appendix interna of pleopod II reduced"Technical Editor
    **Error in original. Should read "In female endopod of pleopod II"-Technical Editor.

[^21]:    *Omission in original. Should read "Dactyl of pereopod $V$ in male docs not form chela"-Technical Editor.

[^22]:    14. 
[^23]:    * According to Manning (1969) N. binghami is armed with one spine and N. rubelles is unarmed-Technical Editor.

[^24]:    *According to Manning (1969) the presence or absence of a "spinescent longitudinal crest" is an important diagnostic character-Technical Editor.

